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TRESVERSIBILITY AND DYNAMICAL MAPS CF
i)
STATISTICAL OPERATCORS

+* .
Vittorio Gorini and E.C.G. Sudarshan

riment of Thvsics, Center for Particle Theory, the University of Texas, Austin
Texas, 73712
1. Imeroduction i
Let ¢ dencte the space generated by the states of a quantum mechanical system.
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A more detailed discussion,
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i} find ocut whether F{4) has sufficiently many extrome elements to make 1t possible
o appr0A1*":e in a suitable topology every dynamical map by means of a finite
convex combinaticn of extreme (pure) dynamical raps, in the same wzy that any

--state can be appreximatea by a finite convex combination of extrerme (pure) states;

&
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(°°) Tris terminclogy was introduced by one of us in ref.[28], where scme proper-
ties of dymamical maps were studied.
See alsc fl;,lf} .
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the extreme dynamical maps.

uch upon

dar

r maps of the 2x

classi

ymmetry

ase when I can be treated as isclated iz
thus having the form A(t)=exp(-i%t), where

xternal world plays a definite role in producimg
> dynamical evoluticn, which ceases ¢ be hamilio-

about a variation in time cf the "purity’ of

the state, which depends on the particular dynamics and on the initial condition. For
exarple, the state of a system which is coupled to 2 thermal reservoir, eventually
ends up in the equilibrium canonical distribution, independently on the original
preparation.
Models of irreversible non-hamiltonian-evolutions, based on various types of

fm o imsng™ d 1in W = to th surromdlings i

raster equatisns’ an ing of the system to the surroundings is
treated either stochastically or mechanically, have teen considersd Dy several au-

1 contexts and in specific physical sitvations {7,30,321,11,20,2,29,

E:3
Scme of these models are discussed in {10] . Here we only make a2 re-
Aasm imrarts Concerning macr 3~ - me which ara adiakari 1h
deem important. Concerning macroscopic systems which are adiabaticallr

hope that their ma




dynanics in the approximaticn of corplete isolation is certainly justified, and much
progress has recently been made in this direction [19,9,32] . However, as regards
the problem of irreversibility, the small residual intéraction of the system with
the surroundings is still important in bringing about a progressive decrease of the
purity of the statistical operator and thus a progressive loss of memory of the i~
nitial state [1,21] . In this connection, non-hamiltonian dynamics is again important.
We hope that a knowledge of the extreme dynamical maps and their possible phy-
sical interpretation might help to clarify the structure of various dynamical evolu-
tions described by a one-parameter family of dynamical maps A(t), by looking at spe~
cial convex decompositions A(t)= 2: ui(t)x\i(t) in terms of extreme maps Ai(t), provi=-
ded there are encugh extreme mapslthat decampositions of this type exist. For exam-
ple, it is sometimes possible [22] to analyze the dynamics of an oper. system as
Ar)= gaﬁ exp{-i ';ent) where the coefficients « of the convex combinatvion do not

depend on time and {'3{‘. } j is a sequence of Liouville-von Neumann operators
: J

=1,2,..
(it can be seen that ex?{—i%qt)
tes). Another example is provided by models of dynamical semigroups t-+A(t) induced

is extreme since it maps pure states to pure sta-

by stochastic processes on topological groups, for which a natural convex decomposi-

tion in terms of extreme maps is given and which seem to find application in the

analysis of master equations of laser theory [17] .

2, Notaticns
M(N):=unitary algebra of the NxN complex matrices with inner product (a,b)=Tr(a*b).
co Y:=convex hull of Y, ' .

extr X:=set of the extreme elements of the convex set X,

K i={wlweM(N); w20, Tt w=1} = set of the NxN density matrices.

> e > . . n n

(b,T): x+ Tx+b denotes an affine map R -+ R .

O{n):=grouwp of the orthogonal nxn real matrices.

SO(n):= { B|B€O(n); det B=1},

SU(n):= group of the unitary nxn complex matrices with determinant one.

Ad:u + Ad u, ue SU(n}, denotes the adjoint representation of SU(n).

Bn:= closed unit ball in R,

S_:* boundary of B .

n n .

diag {a.i}n:= o diagonal matrix with diagonal elements GppeeesBoe
E¥ = topological dual of the topological vector space E.

et

3. Extreme Dvnanical Maps

Let G be the C¥-algebra generated by the bounded observables of a quantum me-
chanical system £ and assume thét CL r2s an identity. Then the set K of states on
O is o(CF e )-compact and its algebtraic span is Q¥ [5]. Let 2 be the point-open
topology {16] on the space N of linear maps G~ & vhere G is taken in the
o(&‘,&)-topology. Defire the set F of the (mathematical) dynamical maps of 1 as
F={ AlAe’; A(K)SK) . Then the following theorem results as a corollary of the -

Xrein-Milman theorem [24] and of a theorem of Kadison [16] .

Thecrem 3.1. cof{extr F) is ¢-dense in F.

If the physical states of I were to be represented by the totality of the elements
of K, the above theorem would give a positive answer to the question whether thers
are "sufficiently many" extreme dynamical maps. On the other hand, in’the conven-
tional formulation of quantum theory which applies to finitely extended systems
and to which cur philosophy about the explanation of irreversibility conforms, one
identifiesCk to B(X), the C§¥a1gebra of bounded operators on a separable Hiibert
space R and assumes the cnly physical states to be the normal ones. Via the cor-
respondence w(a)=Tr(wa), these are identified to the set K(R) of statistical opera~
tors, which spans T (R). Since T(R) is the dual of the CﬁPalgebr of completely cm~

1

tinuous operators [25] which deoes not have an identity, we cannot apply theorem 3.1

to F(R) and, to our knowledge, the problem whether F(R) has "sufficiently many"
extreme elements is open. However, because of the properties of statistical opera-
tors ans since the elements of ?(R) are beunded, we conjecture that an element of
F(R) is the limit of a norm Cawhy sequence of elements of co(extr F(R)). Ve also
is extrere.

remark that an element of F(R) which raps pure states to pure states

Now we consider an N-level system I whose Hilbert space (respectively, whose
»
~

- C"-algebra of observables) is isomorphic to N (respectively, to M(N)). Let

{vu}'.f'l, N2 be a complete orthogonal set (c.o.s.) for M(N) with the normalizaticon
: R
(vu, vv) = (1/N) éu\). Choose the vy"s to be hermitian and, in particular, VN2=(1/N')f‘.

The states of £ are the densitv matrices, forming the set K(N). Expand a density

N . ° &
matrix in temms of the v's: o
U 1 N<=-1
wos = + = v, .
N YN = %Y

-+ > . . -
a is a bijection of X(N) onto a compact and convex

The map 2:w—b{al,...,aN2_l} = 2

. L N2-1 . -
neighbourhocd of the origin in R . We identify henceforth a density matrix w

. .. - def,
with the corresnonding vector a=2(w)e€ (XN 271 M Sinere Tr w2 A o oo



=

af gN-1, and a¥=N-1 iff w is a pure state. Hence L(NV) is contained into the closed Recorks on theorem 3. 7.
P hall of radius (N-l)i and its intersestion with the boundary of the ball is the set ’
! ) a} Using the polar decompositicn of a real matrix, =50, S syTmeric and Dositive
extrL(N) of the pure states. The set of dynanical maps of X is defined as : : ’ - T J T
- 2 g -
————s Q orthogonal, we can split (B,T) as a product (3,Q,) (3,A}(0,Q,), where
B - s
GN) = {AlA:MQ) = M(N), A linear; 2 i= a 3 i
oy = { ) ™, ar; A=ciag {x'z}n’ A, o0 > 0, a,» 0(i=1,...,n}. (a,A) maps 3 to an ellipsoid
2 I i
we KN} = AweK(N) } . \ ‘ . : ;
€ X(N) & (7} Ew whose axes have lengths 3,5 Ay, .eeh Tespectively, and whose center is 3.
‘ ) ) . : T2 n
Let {A be the matrix representing an element A of G(N) with respect to the
t..v ¥, b) extr D_contains in particular the elements of hich into itself
) o > 1 parti T the elements of D which map § into itseif.
. 6.5. {V} . Then : m\'le and ,\230 (111,.”);\;2-1). Writing Aw=(1/%) § i ‘*"glvl n ! n < £ 7n tself. There
n DAY are two types of suwch maps: those of‘ the form (6,(2), Q& 0(n), and those which

and A _jwrl (i=1,...,5%-1) we have c.l ZA cxjivb {i=1,...,N2~1). Hence we can
Jut

; ” 3 . map B onto a point of S .
iden tlf}' G(?‘C) with the set of affine raps of R ‘into itself which map LN} into n n
. b 3 5 e "' : : .

itself. The map z: r“?{b AL } ir,s is a bijection of G(¥) onto a compact and convex ¢} In the physical case n=3, (3,Q) is induced by a wnitary

t t
IR" Hp2-g) , and we henceforth identify A with the Q€50(3), by an antilinear wunitary transformation if QJ&C(INS0{3).

negighbourhood of the origin i
det .

corre 5¢ ratri ments {b., A . GQOY= F(N). The Krein-
‘5“"‘ esponding set of matrix elements {bl* s }1’r,s€‘g(°“)' & e Rre “ d) The relation among the elements of D specified by (b, T)~ (%',z‘°) if£3Q, S&Q(Q
~Hilman theorem ensures that F(N) = co(extrF(N)) and the problem that we are in- such that (b’ T 33(3 Q) fD ‘\(3 Q) is an equivalence relation and fbh T)e exer D
saran in is the classificati «} e £ e
terested in is the classification of the extreme elements of F(N). iff the whole equivalence class of (b,n is contained in extr D .

n

Consider first the simplest case N=2. Then L(2)=By and we lock fcr the extreme

&n o k3 3 e) The geumetrical meaning of the parameters w, is clear from the relatiecn
of affine maps R™ + R™ which map B, into itself or, i s

elements of the set F(2) =
i ) ) 3 . w, = A,/2
more generally, for the extreme elements of the set Dn of affine maps R - R” which 1 il
van B into itself. f} As to the meaning of the ,12 take 8=1 and a< 1. Then Eﬁf‘is = {?}
» B non
ol 1 e . ; «
reoren 3. g} 8 and a are parameters of convex combinations. With the notat ion (a/\;%(a,ﬁ,z;)
In T s . . - L Y
—— X | X S - we have: 1) 4(a,8,8,0) = 8a(s,1,6,0) *+ (1-8)4(a,0,%,0) and we note that
={(5,7] = (0 a,\)( = ' Z,0 : 0 I3 . i
. b { 9’?}[(}371’) ( ,Ql)( ’A)\ ’Qz) . A{G,O,C,IJ) = (510)) 2) A(allia’u) = G.ﬁ(l,l,{,:) * (]-"3) (Q:.l;_g;(.:) and we note
) S that 4(0,1,¢,4) maps B_ onto £
o~ 24,8, map nto g. s
. = (G2, QAQ); Qs Q& 0(n); § n
. e
] h) Take a=8=1 and 3t 0. Then, if w,< 1 we have E ns ={{,;_'}, whare §'={-51,52,..§1)‘
w 82 (Yags i= : ) i
a; 5°i(“ﬂ“i)’ 1=1,0....,n; If mzal and u3< 1, Enﬂ Sn is a circle. If us—l and “4 it is a thres—dimensic—
1 al sphere, and so on. If w_ .=1, w <land £ >0 (‘\ is {n-1)-dimensions
Iﬁ‘\ﬂdlag{c&a(ZE z)-}n; ) n-1 "' "n . n » an { )
e sphere and the map is extreme (as well as when o -l, wi'uch gives the identity
Oa<l, 0¢3¢l, O gu $erns su, cuy = 1, map). The remaining extreme maps are obtained in the limit case & =1, for which
' n 2 .
. the (n-1)-dimensional sphere E f\S degenerates to the point (0,0,...,0,1).
Osgk s1, k=1,....,0; Z{i =1}, .
Pyl ) i) Observe tha‘ the extreme elements have a high symmetry. Prec isely, if [3, is
ha 3 d £ 7 3 +a3 * 3 =1 i i bo] ki ’ N
'he boundary of Dn is obtained by taking 8=1; EXUDR is obtained by taking extreme, theq 3 C 6 O(n) and a subgroup of O(n), say r, iscmorphic to O(n-1),
B=amo, ", e o =1 and £2>0., such that QIC~ Q e o tan Qb = b, ¥ Q&r. However, this conditen is not

sufficient for (o T) to be extreme, as the example 3=q= wiFeoeme  o=l,e <1,g =0
n~1 n n

; .
! . : shows.
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n=3, 1ff it is induced by either a tnitary or an antilinear wnitary map on

Zerarks on the case N> 2,

aj

maps 1ff A3=Ei Lialf where I z k3 =1

If N>2, L(N) is a prcper subset of Byz 1’ and the problem of finding extrF(N) is

rore complicated. A partial classification is provided by theorem 3.3 below
27,43 . L{V) is no more mapped onto itself by arbitrary rotationms, but by those
rotations which are the elements of the adjeint represgn{ation of SUN). Such
rotations are induced hy transformations wsuwu® , u unitary, on the density ma-
trices. Antilinezr unitary transformations induce rotations if N=4k, 4k+l, re-
flections if N=4k-2Z, 4k-1 (3=1,2,3,...... ). All the above maps are extreme be-
cause they map pure states to pure states (and we conjecture that they are the
only extreme map arong those for which (I/LUEN is a fixed point). For the same
reason, also the maps which map L(N) onto a given pure state are extreme.

We guess that the extreme elements of F(N) have a high symmetry also in the case
N>2. To be precise, we make the fcllowing

Conjecture. Let V(N) dernote the subgroup of O(Nz—l) generated by{Ad SU(N)%JAO,
where A is a given dynamical rap induced by an antilinear unitary transformat-
plais N Then, if (b,T) is extreme, 3 C € V(N) and a subgroup of V(N), T say, iso-
morphic to the subgroup generated by [Ad SU(N-l)IUAO such that QTC1 Q 1C=T and
Gh=b, ¥ Qer.

Let 1n denote the identity map M(n) ~ M(n). By definition [27,3] an element A

of G(N) is completely positive iff, for all positive integers n, AB1_ 1is a
n

positive map of M(N) & M(n) into itself.

Theorem 3.3 [27,4} An element A of G(N) is extreme among the completely positive

N and {2 131 i, is a linearly independent set

in M(N) .
Remark. The elements of G{N) which are induced by antilinear unitary transformations

| N s
on € are not carpletely positive. To our knowledge, it is an open question which

other elements of G(N), if any, are not Cﬂmo1etely positive.
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