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Abstract. Quantum mechanics presumes classical measuring instruments with which
they interact. The problem of measurement interaction between classical ana quantum
systems is posed ana solved. The restriction to compatible measurements comes
about naturally as the condition for the integrity of the classical system. A technical
device is the perspective on classical mechanics as quantum mechanics with essentially
hidden dynamical variables.
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1. Introduction
The need for interaction between classical and quantum systems

Classical mechanics is the crystallization of our everyday experiences of matter
and motion. During this century, we have found, however, that to deal with
matter in the minute and matter in the subtle we must use quantum mechanics
(Jammer 1966). Quantum mechanics has many points of similarity with classical
mechanics and these aid us in developing quantum mechanics; but there are

also many essential points of difference. The most important of these points of

difference is that not all dynamical variables can be measured at the same time.
The dynamical variables constitute a noncommuting algebra from which a commut-
ing subalgebra is selected by any possible measurement. Such a state of affairs
is beyond our everyday experience, though it may not be totally alien, in that,
poetic experience, dream experience and extraordinary states of awareness share
kinship with the structure of quantum mechanics.

Measurement in quantum mechanics is the physical process by which “ pointer
readings ” are obtained which correspond to numerical values of a commuting
subalgebra of dynamical variables. The remarkable feature of quantum-mechanical
measurements is that not all dynamical variables can be measured simultaneously
even in principle. Yet the measurement of a maximal commuting subalgebra
of dynamical variables would yield, in the case of pure states, a complete speci-
fication of the state. Even a pure state can yield a dispersion in the measure-
ment of one or more dynamical variables. So the measurement process should
be such as to produce classical pointer readings on the one hand; and lead to
unambiguous measurements for a ““ compatible ” set of measurements, a measure-
ment of a commuting set of dynamical variables (Bohr 1963; Dirac 1958) on the
other hand.
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Quantum mechanics as a physical theory, then, must presuppose classical systems
which can be influenced by the quantum sysiem. It must therefore, require the
coupling of classical and quantum systems. ([The classical measuring instrument
must be a classical system with a low dynamic inertia which undergoes a catastrophe
so that the pointer readings can be recorded.] It is, however, known that the general
structure of classical and quantum dyaamics are different (Moyal 1949). It
is customary to avoid the problem of coupling of classical and quantum systems
and deal with models of the measurement process using quantum systems which
are treated semiclassically (d’Espagnat 1971).

In this paper I shall proceed in a differeat manner. I introduce a direct method
of dealing with the interaction of classical and quantum systems. It is made
possible by the discovery that a classical system can be embedded in a quantum
system with a continuum of superselection sectors. If the classical system is to
preserve its integrity, the couplings to the quantum system must be suitably restric-
ted. The notion of compatible measurements cmerges as consequence of this
principle of integrity of the classical system. As far as | am able to tell, the theory
developed in this paper is consistent with the. traditional ideas of measuremeut
theory and provides the solution to the long-standing problem of providing a
dynamical framework for quantum measureme:it theory.

2. Classical systems as quantum systems with superselection

Quantum mechanical states are vectors (or, rather, rays) in a linear vector space
and can be superposed (Dirac 1958). The result of superposition is a pure state,
a coherent weighted combination of the two states; it is to be contrasted with a
mixture which is an incoherent weighted combination of the two states. In classical
mechanics the pure states are those corresponding to precise values for all dynamical
variables. As such, we cannot but have licoherent additions between states;

there are nc coherent combinations of two pure states which can be identified as
a pure state.

There is one situation in which coherent combinations between two pure states
of a quantum system are not identified: this arises in the case of a quantum
system with ‘¢ superselection rules > (Wick et al.. 1952; see also Jordan 1969).
If we have subsets of states which are such that no dynamical variable which connects
these two subsets can be measured, then the relative phase of any two states
belonging to these two subsets becomes irrelevant. The two subsets of states are
now labelled superselection sectors. The nonexistence of matrix elements between
superselection sectors implies that any dynamical variable which has a constant
value within a superselection sector, but different values in different superselection
sectors, obeys an inviolable selection rule—a *“ superselection rule **. It is believed

that the electric charge, baryon number and oddness of fermions gmerate super-
selection rules.

I find it mors convenient to put the emphasis somewhat differently and view
superselection as a * principle of impotence’’. In a quantum theory let us
designate certain dynamical variables as being unobservable in principle. Consider
all dynamical variables which commute with the set Z of non-observable dynamical
variables. They form a subalgebra called the commutant Z’ of the set Z. This
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is the subalgebra of observables. In general the algebra of observables is non-
commutative like the algebra of dynamical variables.

The remarkable fact is that we could enlarge the set Z to the point where the
commutant of observables, Z’, is commutative. Then all the observables can be
measurcd simultaneously. This could be a suitable model for a classical system,
especially if each pure state is a superselection scctor by itself. Then the absence
of superpositions for classical systems would be understandable.

For Hamiltonian system with one degree of freedom and with commuting canoni-
cal variables x, p the equations of motion take the form

. OH . -

X = b—p = —1 [Xa H]

. H ) -

p= <y =—ilp, H] (2.1}
where,

~ (OH DY  JdH D A '

= (&2 et 9 2

A "\op ¥ T X a;;)‘ 2-2)
The operators X and p defined by
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X=+15—1—9, b= —iy (2.3)

have the property
X, X1=0; [y pl=i:
[p, X]= —i; [p, pl=0. (2.4)
Thus the quantities
0

w=(x, p) and == (—Dp, 2):‘:5:,

may be viewed as the canonical coordinate and momentum operators of a
quantum system with fwo degrees of freedom. The equations of motion of
the classical system can be viewed as the equation of motion of the quantum
system with the Hamiltonian operator

OH (w) ,, D
Hop =150 ¢ 355
e (w) = [wH, w4, (2.5)
in the form
w=—1[w, Hy =i(wH,, — H,, o) 2.6)

We note that the Hamiltonian operator is /inear in the quantum momenta 7 (3/dw)
and hence any phase space density p (w) is mapped into a new phase space density
f (w) such that p (&) = p (w) where o are the displaced values obtained by solv-
ing (2.6). If instead of this Schrodinger form of time development we were to
view the time development in terms of the Heisenberg picture, we have the result
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f(w) = f @) 2.7)

where @ is the solutiou to (2.6). It is important to note that & is a function

of w alone and not of w and = by virtue of the linearity of H,, in the quantum
canonical momenta .

Let us now endow the quantum system with two degrees of freedom with the
superselection principle that the quantum momenta = = ; (d/dw) are unobservable at all
times and under all conditions. This implies and is implied by the identification
of the observables with the commutative algebra of functions f (w) of the coordi-
nate operators. [This construction of a quantum theory embedding the classical

theory is to be contrasted with the work of Coopman 1931 ; see also, Jordan and
Sudarshan 1961].

State vectors for the quantum system are given, in the Schrodinger representation,
by their wave functions i (w). But because of the superselection principle, the
relative phase of the distinct ideal eigenstates of coordinate operators is unnieasur-
able and, therefore, irrelevant. Hence, we are led to the equivalence

P (0) ~ i (w) exp {id (w)} (2.8)

Therefore, only the absolute value of ¢ (w) is relevant and may be taken as the
positive square root of the phase space density

$ (w) = v/ p (w). (2.9)

The ideal eigenstates of the coordinate operators is identified with the classical
state corresponding to a point in phase space. The time development is given
by (2.6) and (2.7) and leads to a trajectory in phase space which. is entirely observ-
able. The possibility of being able to observe the entire trajectory is to be directly

traced to the linearity of the Hamiltonian operator (2.5) in the quantum momen-
tum operators.

It is to be noted that the Hamilionian operator (2.5) is not observable: What

is observable is the associated emergy function H (w) which is a function of the
quantum coordinate operators only.

The restriction to the study of a classical system with one degree of freedom
and its mapping on to a quantum system with two degrees of freedom with a

superselection principle can be generalized to a system with f degrees of freedom.
In this case

w = (ql,,. cosdy s Prses "5pf)

E Y2 a) |
Y L N TR | 2.10
7 (D(]l 3G; 0Py 0Py , ( )

The observables are functions of the » only, and the Hamilionian operator being
linear in the quantum momenia = the {rajectories continue to be observable.

We can generalize the system even further. Let w denote the untire set of classical
dynamical variables. We can then map it onto the superseleciion sectors of a
quantum theory with w and i(2/dw) as coordinate and momentum operators and
a Hamiltonian operator (2.5) linear in the momentum operators. The generalized

“ trajectory ” is now the specification of all w as functions of time and this is
entirely observable.
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Not only the Hamiltonian, but all the generators of canonical transformations
including displacements, rotations and transformations to moving frames are
linear in the momenta (Sudarshan and Mukunda 1974). None of them are observ-
able, but there are associated dynamical quantities of momentum, angular momen-
tum and moment of mass which are either constant or have simple time depen-
dence. I shall not elaboraie on these gencralizations in this paper.

What I have presented here is the complete equivalence of a classical system
with a suitable quantum system endowed with a superselection principle: Classical
mechanics as a hidden variable theory !

3. Coupiing of classical and quantum systems

Since a classical system is a special kind of quantum system, we may couple a
classical system with a quantum system provided we pay attention to the super-
seleciion principle: the momentum operators = = i (3/dw) shall coniinue to remain
unobservable. The dynamical variables are elements of the noncommutative
algebra generated by w, = and the quanium system variable which I colleciively
denote by £. These variables £ may involve canonical pairs Q, P or spin variables S,
or more general quantities. (In this paper I deal wiih sysiems with a finiie
number of degrees of freedom and specifically exclude dynamical fields, for techni-
cal reasons). Given such a system, the Hamiltonian operator may be wriiien

Hy,, = Hj, + Hgy (2.11
with
o __.0H d
Hop - lbw'u‘ ell- (‘U) Dw"’ + ‘Y(g)
_0H

D wh ¥ (w) Ty + X(f)

Hoy = it (w, €) a—zﬁ + A (o, &) (2.12)

= G',J'u' (0), 5) Ty, + & (ws 5)'

Here H is a function of w only and X is a function of € only ; ¢# and /4 depend
on both set of variables to describe interaction. We can absorb the * free Hamil-

tonian” terms into the interaction part and rewrite
Hoyp = $* (wa '5)771.4.'{')(("‘): £). 3.1
‘The equations of motion for w# and ¢ are given by
Wt = — Pr 3.2)
£ =—il¢, oM m, —ilé X1, (3.3)

By virtue of these equations w# (¢) become functionally dependent on the non-
commutative quantum variables ¢, but these same equations guarantee that they
will continue to remain mutually commutative. We can also write down the equa-
tions of motion for ##. The superselection principle requires them to remain un-
observable and also demands that w* (¢) should not depend on =.
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We can use (3.1) to calculate the higher time derivatives of «#. We getl

(:I;M = -+ i[éus Hap]

= (5o ) i [, 1, o+ (B, X 3.4
w

If @ (¢) is to be independent of = for all #, we must have the coefficient of the
7, term vanish. We get, thereforc, the requirement

[‘{’M’ ﬁl'V] = 0.

We could derive a stronger condition by observing that according to (3.2) the
velocities are given by — ¢* (w) and these are all simultaneously measurable. Hence

[B# (w), D* ()] = 0. 3.5

where o’ is a suitable point in the classical phase space which may or may not
coincide with w. [We may therefore differentiate with respect io «’ any number
of times !} Barring singular “ impulsive ” inieractions velocities and accelerations
should also commute, by virtue of (3.4) and (3.5) we obtain

[[8# (w), X1, ¢* ()] = 0.

If we were to deal with higher derivatives of w, we could deduce additional rela-
tions of the form

[ @, X, x], ¢ (@)] =0
[[[[‘z”’w (w), X1, X]’ X]’ i (w/)] -0

and so on. All these relations are satisfied if :
[¢7, X]=f* (4, w). (3.6)

Consisiency of the superselection principle for the interacting classical system
and the observability of the ¢ trajectory *’ can be translated into the requirement
that the coupling functions @* (w, &) are dependent only on a commutative subset
of the quantum variables; the function may depend on other quanium dynamical
variables also but in such a special manner that [$#, X] depends only on these
commuiing seis of quanium variables. If, for example, we were to have D*
dependent only on canonical coordinale operators, then X can depend linearly
on the quantum momentum operaiors, unless the interaciions are impulsive.

(I am grateful to Narasimhaiengar Mukunda for a patient and critical discussion
of these considerations.]

It is gratifying that we are naturally led to a measurement, via the classical

trajectory, of only a commuting set of quantum dynamical variables.

I discuss
measurement in the next section.

4. Measurement

Let us now turn to measurement of quantum dynamical variables. We have seen
in the last section that if we need io measure a subset of the maximal commuting
set of quantities {, which themselves form a subset of the set &€ of dynamical

*
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variables of the guantum system, then we couple suitable functions @* ({, w) to
the classical sysiem through the nonobservable dynamical variables 7 (3/3w*). Then
the classical trajectory ® (f) now depends on the {. A consequence of this is
the possibility of ““ branching” of the classical trajectory if the quantum variables
@# are many-valued. The most familiar example of this is the splitting of a
molecular beam in the Stern-Gerlach experimeni. We now study the measure-
ment problem more systematically. |

Two kinds of measurement interaction may be distinguished : continuous measure-
mentis in which quantum dynamical variables are moniiored continuously and
discrete measurements in which instantaneous values are measured by one or more
impulsive interactions.

For impulsive interactions we consider a singular perturbation of the un
coupled quantum and classical systems idealized in the form

Hi, = V(ws S)S(I'—to)
= {iot (o, 9) S+ X (o, olse—uw. | @.1)

The effect of this impulsive interaction is obtained by going to the interaction
picture. (I am grateful to Baidyanath Misra for a discussion of this question).
The generator of interactions is the time-ordered unitary operator

U= (exp{—1[ V(o (), £@)5 (c — 1) d}).,
=exp(d5n“5%———iX). (4.2)

The classical sysiem is a quantum system with the siate vector  (w) with the
distinct values of w corresponding to distinct superselection sectors. So essentially
only |4 (w) | 15 relevant. The integrity of the classical system demands that this
feature be preserved by the transformation (4.2). If the state vector of the
coupled sysiem is denoied by ¥ (w, {)

¥ (w, ) = ¥ (o, O

where
V(o b)) =¥ (w, ) 4.3)
w; = UnlU™?
§ = Ugu—
S Y, = Uy, 4.4

We require that the d/dw do not enter into the expression of w;. Since

wz“:wﬂ—-@“+§;[¢vi--—fx, 2

dw? »
1 > IR & B
_ﬁ[gbkﬁ———zX, [cpv_&?—_lx, @u]] + . 4.5)

these requiremenis are met if
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Ok = D (w [) (4.6)

X =0.
The condition (4.6) together with (4.5) imply the possibility of measuring all

members of a complete set { of commuting observables. We may write the

expression for w/* given by (4.5) as the solution of the differential equations

ok (0 (), ) = 0 @

with the boundary conditions
ok (0) = wh (fy) = wh (£, —)
wh (1) = wf (2o) = wk (t,+ ). (4.8)

since all the { can be simultaneously diagonalized (4.7) may be viewed as a
set of differential equarvions labelled by a set of parameters; (4.8) then yields
a “branching of the trajectories ” according to the quantization of the set £.

If we make repeated observations, we must guarantec the integrity of the classical
system; this entails the * compatibility * of the different measurement interactions.
If we denote by them by

; d

O S
then in the interaction picture

[B.#(5), B (t)]=0. (4.9)

A special limiting case of repeated observations is the situation of continuous

observation. The discussion in the last section shows that in this case we should
demand '

. o (t _— tl) a.nd i®2u —b’“‘ 8 (t - f2))
dawh

QM =—= P (w, 0)
X, P¥] =f#(w, {) | (4.10)

with the interaction in the form (3.1). We cannot, in this case, choose X = 0,
since it involves the * free ” Hamiltonian of the quantum system. It is interesting

and important to note that the quantities that can be continuously observed need
not be constants of motion.

As simple examples of continuous measurements we may consider the Stern-
Gerlach experiment with the Hamiltonian operator
— i d

. i
__1.72 p D—EI--—‘ FS’;; gp';“—))_Bs.S3

where I' is proportional to the maguetic field gradient. The equations of motion
can be solved to yield, without any essential loss of generality,

1
0 () = aplf; g:(t)=0;

()= £ L I'e2

where the spin is taken to have values 1.

. We get two parabolas for the tra-
iectory.

o
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Another simple examplé is the measurement of the quantum coordmate Q of
harmonic oscillator by an impulsive intcraction:

. 0

+_27n(P2+ w2M2Q2)

l%’Q L8 (t— 1)

The classncal trajectory would be a straight line at umform velomty exceptmg f‘orf‘
the sudden jump in the momentum by the amount Ap=.A0.

If we wish to measure the coordinate at a later instant, it could be compatible only
if it is an integral number of periods later when we recover the same value.

5. Concluding remarks

The superselection principle applicable to the classical system viewed as a quantum’
system makes different phase space configurations belong to different superselection
sectors and hencs their relative phase is nonmeasurable. The loss of this phase
information is compensated by the continuous observability of the phase space
trajectory. It is of comsiderable interest to note that if the classical system was:
coupled to a quantum system in an eigenstate of a set of variables { and the
subsequent interaction is in terms of a set of variables 7 which commute among
themselves but not with [ the different components of the split classical trajec-
tory have phase relations, but these phase relations cannot be measured in any
fashion except by giving up the information on the variables » and then proceed-
ing to measure {. Any definitive measurement of » desiroys any phase relations
which exist.

We may view measurement as being destruction of any phase information so
that the component beam becomes a genuine physical system in itself. Measure-
ment may thus be viewed as the process of one-becoming-two.

We point out ihat classical mechanics is viewed in this paper as quantum mecha-
nics with hidden variables. The hiddenness of the quantities i(9/dw) and functions
of them is an essential property which must be maintained to preserve the integrity
of the classical system. Unlike the orthodox quantum theories with superselection
rules, here the Hamiltonian does not preserve the superselection sectors, but causes
continuous and lawful evolution of the system from one sector to another so
that we have a nontrivial classical trajectory. This leads to no inconsistencies,
since the Hamiltonian is not an observable but it is associated in a (projective,
up to—neutral element) correspondence with the energy operator which is an
observable.

The position taken in this paper is that all classical dynamical variables can be
measured and that quantum dynamical variables are to be measured by coupling
a classical system to quantum system. Thus, we have seen that the interaction
(3.1) converts the dynamical variables — @ into the velocities w* alcng the classical
trajectory. The question of measuring classical dynamical variables, tbe cata-
strophic configuration of pointers that give pointer readings and the irreversibility
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that is implicit in a recordable measurement and, finally, the role of the ObS’el:VCI‘
or rather, the presiding intelligence in the measurement protocol and its authentica-
tion (Wigner 1952) are questions tco profound to be discussed in this paper. My
understanding is well summarized by the smrti:

Sarvigamanamacaram
pratyapi parikalpayet
acara prabhavo dharmo
dharmasya praburacyutah

[All authoritative formulations stress the proper procedure; proper proccdure
is the prerequisite to natural law, The immutable awareness (the Self) is the

presiding intelligence.]
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