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We introduce an unconventional approach to the measurement problem in quantum mechanics: we treat the
apparatus as a classical system belonging to the macroworld. To describe the quantum measurement process
we must couple the classical apparatus to the quantum system. In this paper we explain how this is to be
done: we embed the classical apparatus into a larger quantum-mechanical structure, making use of a
superselection principle. The apparatus can now be coupled to the quantum system in a straightforward
manner. We discuss what constraints should be placed on the coupling so that an interpretation of the
interaction as a measurement results. We require that unambiguous information of the values of a quantum
observable should be transferred to the variables of the apparatus. We also require that the apparatus should
retain its classical identity. This latter requirement is formulated as a principle of integrity, in both weak

and strong forms.

1. INTRODUCTION

The structure and formulation of quantum-me-
chanical systems is by now well understood. The
interaction of a number of simple quantum sys-
tems with each other has been examined repeatedly
and is in remarkable quantitative agreement with
experimental results. However, there is one area
which even now gives rise to controversy and heat-
ed argumentation, namely the problem of mea-
surement and the interpretation of quantum me- i
chanics.! The interaction between the microcosm
and the macroworld is quite simply not fully under-
stood. In this paper we wish to discuss some top-
ics connected with measurement.

A measurement results from the interaction be-
tween a special system (the “apparatus”) and the
original system in question (the “system”). In our
considerations the system would be a purely quan-
tum-mechanical system of suitably simple struc-
ture and obeying the well-known laws of quantum
mechanics. In other applications, for example
cosmology, the system will be a general-relativ-
istic system. The point of view we wish to advance
is that a piece of apparatus can, and should, be
described by the laws of classical mechanics. The
apparatus one uses in a laboratory, for example,
belongs to the macroscopic world. The macro-
scopic world is apparently so well described by
classical physics, be it of a statistical or a deter-
ministic nature, that one can say it is indeed clas-
sical. Thus we shall choose to discuss and de-
scribe the apparatus by means of classical phys-
ics. The apparatus must be not only classical,
but also of a simple enough structure that its rel-
evant configurations can be easily parametrized
and these parameters related to appropriate prop-
erties of the observed system: The process of

making this correspondence is the calibration of
the apparatus. Moreover, the configurations of
the apparatus must be relatively stable on the one
hand so that it can be read, while there should be
selective minimal inertia to change of configura-
tion so that the system vdriables can influence,
and reflect themselves in the change of, the con-
figuration of the apparatus. It is understood that
we have at our disposal the ability for making and
reading pointers, of setting the apparatus into
preselected standard configurations, and shielding
the sensitive apparatus from stray and unwanted
influences.

The crux of the measuring process, then, con-
sists in the ability to join together the apparatus
and system into a single complex system and then
to separate them into two. This process of cou-
pling and decoupling is a legal process and is only
approximately carried out by such loosely defined
physical processes as spatial juxtaposition and
separation. Primarily it amounts to the build-up
and the destruction of correlations by a deliberate
act.

A true piece of apparatus is, in most cases, a
very complicated mechanical system. For this
reason we shall not, in the present work, attempt
to produce a model of classical physics for a par-
ticular piece of apparatus. Rather, we are more
interested for the present in understanding the
principles involved. For this reason the examples
we consider may appear, at first glance, to be of
a trivial nature.

For our purposes a “measurement” is achieved
if unique information of the value of a quantum
“system” observable can be transferred into the
classical apparatus in an unambiguous fashion to
be read off later by an observer.?

If we are to successfully use such an apparatus
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to measure properties of a quantum system, it is
clear that we must first understand how to engin-
eer interactions between classical systems and
quantal systems. It is the purpose of this paper
to pursue further an approach to this problem
presented previously by Sudarshan.® In this ap-
proach we embed, in a highly nontrivial way, the
classical system into a quantum system with twice
the number of degrees of freedom. However, this
quantum (-enlarged) system is richer than is al-
lowed by measurements on the primitive classical
system. The classical system per se is a “sec-
tion” of the quantum (-enlarged) system with only
a subset of dynamical variables being perceived.
There is a richness that is inherent to the system
which is ignored in the classical perception. This
richness corresponds to the existence of dynamical
variables which cannot be observed, which remain
“hidden.”

II. CLASSICAL SYSTEMS AS QUANTUM SYSTEMS
WITH SUPERSELECTION

At first glance it may seem that the structures
of quantum and classical mechanics are very dif-
ferent. Indeed, in quantum mechanics not all of
the dynamical variables commute, whereas in
classical mechanics they form a commuting set.
Another difference, related to the first, is that
one can superpose coherently two pure states to
form another pure state in quantum mechanics,
but this cannot be done in classical mechanics.
Here a pure state is characterized by exact values
for all the dynamical variables, and so any com-
bination of such states must fail to satisfy the cri-
terion for purity. In the usual formulation of clas-
sical mechanics it is not possible to talk about
superposed states.

However, it is precisely these differences which
show us how to embed a classical system in a
quantum system. There are situations in the form-
ulation of quantum mechanics where coherent lin-
ear combinations of pure states are not of their
own right pure states. This occurs when a theory
possesses superselection rules. The superselect-
ing operators decompose the Hilbert space of
states such that no observable operator can map
states in one eigenspace into a different eigen-
space. Furthermore, in a superposition over dif-
ferent superselected eigenspaces the relative
phases between states belonging to different eigen-
spaces are not measurable.

It is possible to view superselection as a state-
ment about unobservable operators. In the present
context, namely, examining a noncommutative
structure with a view to using it in the description
of a classical system, we want the algebra of the

observable operators to be commutative. We shall

use superselection to achieve this result, albeit

a nonconventional form of superselection is used.*

In this section we shall outline this procedure.
Consider first a simple classical system. In the

Hamiltonian formulation, a classical system with

n degrees of freedom is characterized by » coor-

dinates (q,,...,q,) and » conjugate momenta
(pyy---,Pn)- The pure states of the system are giv-
en by specifying a point in phase space, i.e., we
specify a value for each of the » pairs of canonical
coordinates (q,,p,), - - - ,(q,, p,)- This defines the
kinematics. To discuss the dynamics of the sys-
tem one needs to write down the Hamiltonian func-
tion, H(q,p), of the system. Then, Hamilton’s
form of the equations of motion is

. [}

q«l':'ép—‘H(q’p) ) (2-1)
. 9

pi=°'5'q_;H(q’p)- (2.2)

By using the Poisson brackets

ey (X 2 2L X)), (2.3)

7 9q; 0p; 9q,; 9p;
these equations can be rewritten as
211={CI¢,H}’ P1={PuH}’ . (2.4)

where the apparent asymmetry, due to the minus
sign in (2.2), has vanished. Once the initial con-
ditions are given in the form

q;(t=0)=q‘i’,
(2.5)
pi(t=0)=p{,

the dynamical evolution of the system is deter-
mined for all future times, so long as the system
is not disturbed in any way.

We are now in a position to describe the quantum
system in which we find this classical system em-
bedded. We shall follow a constructive method to
illustrate the choice. Let

w={wl, ., 0 =g, Gy Py e s Db (2.8)

These were the dynamical variables of the classi-
cal system. We now view them as a set of com-
muting operators, acting on a Hilbert space of
vectors. We introduce operators

L, (2.7

which are conjugate to the w operators, with re-
spect to commutation. That is to say,

[wu’ﬂv]zwuﬂv - T w* = {A6*Y (2.8)

r={rt,.

and we will henceforth use natural units with 7=1.
(This sense of conjugacy is not to be confused with
the conjugacy concept in the Hamiltonian formula-
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tion of classical mechanics. There, conjugacy was
with respect to the Poisson bracket, so that

{lItu}= 0.

Qur conjugacy, on the other hand is defined with
respect to commutation.) A representation of the
m operators which is an aid to visualizing this
method is
)
= W . (2.9)

So we now have an algebra of dynamical variables
which consists of 2z pairs of canonically conjugate
operators. We shall regard the set {w!, ..., w*"}
as a set of superselecting operators so that the
conjugate “momenta” 7* are unobservable opera-
tors. The operators w" are, thus, observable op-
erators, and they form a commuting set. Since @,
the algebra of observables, includes all functions
of the observables, it is clear that an operator be-
longing to @ is observable if and only if it is inde-
pendent of the unobservable operators 7*.

The operators of @ act on a Hilbert space of vec-
tors, h. We shall concentrate on the observable
operators w*, as they are of primary importance
to us. These operators possess a continuous spec-
trum. Following conventional treatments we will
consider the space b to be extended so that it con-
tains also the unnormalizable eigenvectors for w".
(The space of states b will thus no longer be a Hil-
bert space.) If we denote such eigenvectors by
|w0>, where

w* |wy )= wh | w, ), (2.10)
then the w representative of this state is
(wlwo)EH O(w* — w¥)
3
= 0(w' — w})0(w? — w?) * * + B(w?" — w2"),
(2.11)

These are the wave functions corresponding to an
eigenstate of w. Now, since the different eigen-
spaces of the w* are superselected, we can see
that to the extent direct observation is concerned,
b actually decomposes into a direct sum of disjoint
one-dimensional state spaces corresponding to
precise values for all of the observables w”.

The specification of the state of the system in the
Heisenberg picture can be viewed as the analog of
the initial values seen in the classical formulation.
This is made even more transparent if as the state
of the system we choose an eigenstate of w, cor-
responding to the initial values of Eqs. (2.5),

[9)=|wo)= % 1°. (2.12)

The dynamics of the quantum system must also

be specified. We note, in this regard, the follow-
ing result: If we define

, 8H(q,p) ®  0H(q,p) ]
H_= —e o or] 2.13
op ? JZ[ aqj ap" apj aqj ’ ( )

then the equations of motion (2.4) appear as

éj= _i[qj}Hop]; i)j="'i[pj}Hop]'

These equations are very suggestive of the Heisen-
berg picture equations of motion. For.this reason
we will discuss, in this section, the time develop-
ment of the quantum system in the Heisenberg pic-
ture, and treat the Schrédinger picture viewpoint
later.

The time development of the operators of the
quantum theory is defined in the usual manner,
A(0)=A and

A(t)= et A(0) et
The equation of motion for A(?) is
A(t) = —i[A(2),5¢].

Here 3C is the Hamiltonian operator of the model.
Using (2.9) we may rewrite (2.13) in the form

(2.14)

(2.15)

9

o= 229) cuu (2.16)

with €*={w*, v’} and H(w) the Hamiltonian function
of the classical theory. Then the equations of mo-

tion for w"(#) will be just Eqs. (2.14), and they can

be written as

() = —i[w*(8),5€] . (2.17)

We also have a set of equations of motion for the
unobservable operators m*(%),

T (f) = —i[m*(8),3¢] . (2.18)

Clearly, the dynamics of the state of the system is
now determined for all future times, if the system
is left undisturbed.

The quantum theory we have constructed above is
highly nonconventional in character, so some qual-
ifying comments are necessary. We should first
note that the Hamiltonian operator (2.16), and
hence also the time evolution operator, is not an
observable operator. This might appear strange
at first sight, as we normally associate the Ham-
iltonian with the energy operator. We must re-
member that in the theory constructed the energy
function (or operator) of the physical sector is
H(w) and not 3 as given in (2.16). Thus there
should be no confusion over this point.

Although the Hamiltonian operator 3C is function-
ally dependent on the unobservable operators 7",
this dependence is strictly regulated. ¥C is linear
in 7#. Thus, as we can see from their equations
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of motion, the w"*(¢) operators will remain inde-
pendent of the operators 7* for all times, i.e., they
remain in the observable subalgebra of the algebra
of dynamical variables for all times. As a cor-
ollary to this result we note that for all times ¢

the values of all the observables of the theory can
be simultaneously specified.

In the construction of the above theory we ap-
pealed to superselection to achieve a commutative
algebra of observables. As we noted, the state
space upon which our observables act is a direct
sum of one-dimensional superselected subspaces.
Thus, in ary superposition over states the relative
phases are not measurable, and so the superposi-
tion of two distinct pure states is not a pure state.

However, this usage of superselection is not
the same as the conventional superselection rules.*
It follows in the above scheme that no observable
can have nonzero matrix elements between any two
distinct states: It is trivial to observe that this is
indeed true for all functions of w, i.e., all “phase
functions.” The reproduction of the classical equa-
tions of motion led us inexorably to the Hamilton-
ian operator (2.16). This operator is not observ-
able.

If the Hamiltonian were an observable, the time
development operator would be also. It would then
follow that the time development operator could
not change the system from one superselected sub-
space to another: Consequently, the labels of these
subspaces would be constants of the motion. We
would have a superselection rule.

In the present case the energy function H(w) is a
phase function but the Hamiltonian operator, and
hence also the time development operator, is an
unobservable operator. Consequently, we can,
and do, have transitions from one superselected
subspace to another in the course of time. We have
motions which change the labels of the superselect-
ed subspaces: Thus if a system is described at
time ¢, by a state belonging to one superselected
subspace, at a later time ¢, the system will be rep-
resented by a state belonging to a different sub-
space. This point will be illustrated in the exam-
ples treated in the next section.

III. SOME SIMPLE EXAMPLES

In the preceding section we introduced a general
method for embedding a classical-mechanical sys-
tem in a quantum-mechanical system. It is in-
structive at this stage to examine some simple
classical-mechanical systems in the light of this
embedding procedure. We shall consider very ele-
mentary problems, namely that of a classical free-
ly moving particle, that of a particle moving in a
conservative field of force, and in particular a

simple harmonic oscillator.

Consider first the case of the freely moving clas-
sical particle. The conjugate dynamical variables
are chosen to be q=(q,, q,,9,) and p=(p,, p,,ps), and
the dynamics is given by the Hamiltonian energy
function

v e ,

H(g,p) =5 (3.1)
In the quantum system the conjugate dynamical
variables are

w=(q,p)
and (3.2)
7= (79,7?).

Following the prescription (2.16) for the time de-
velopment operator, we find

= _]_'__".”q
=+ — BT (3.3)

Notice that this operator is linear in the conjugate
momenta 7. The superselection principle specifies
that the w" are superselecting operators whereas
the 7 are unobservable operators. The equations
of motion for the dynamical variables in the Heis-
enberg picture are

p(t)=07 (I(t)=—P(t),
§ i o Pi (3.4

T0=0, #DO=-1a%0,

with corresponding solutions, in terms of the op-
erators at an initial time

PAO=L0), 4(D=a,(0)+= p O},
(3.5)

TH(H=TH0), 71)=740) -1 w50z,

The first pair of equations mimic for the observ-
able operators the classical solutions. The equa-
tions and solutions for the unobservables cannot be
physically checked, but they are necessary to en-
sure the internal consistency of the quantum theo-
ry.

The solutions (3.5) are operator solutions. We
must also specify the state of the system. Clas-
sically the state chosen is a pure state: p; and g;
have exact values initially. Correspondingly in
this case we can choose the state representing the
system to be a pure state—i.e., an eigenstate of
the complete commuting set of observable opera-
tors ¢; and p;, of the form

[ 9= |q0, 207, (3.6)

where
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leqo,Po)=Pj0|51mpo>

and

4,190, 00)= 45,140, 0)-

Then at a later time ¢ the values of the operator
solutions (3.5) are found by taking the expectation
values, viz.

(b D0u=by, @DNa=ay 4= byt (3.7)

So if initially the particle has coordinates by q,o
then at time / it has coordinates p; , q; + (l/m)pj
just exactly the classical solution.

If we had worked in the Schrodinger picture, the
state of the system would be seen to develop from
the state |¥,0)= | ¥), defined by (3.6), to the state
‘\If t) on which ¢g; and p; would yield the values
(3.7). Clearly |¥,0)and |¥,?) belong to different

superselected sectors of the space of state vectors.

For the classical particle moving in a conserva-
tive force field the Hamiltonian energy function is

p2
H(Q,P)=2—m+V(CI)a (3'8)
where
- 9
F= —'ag (q)

Then the corresponding Hamiltonian operator is
- - a -

se=+~ poie 20D 3.

m Bq

The corresponding Heisenberg equations of motion
are

(3.9)

. 9 . 1
pit)= =5, Vig=F;, qi)=— 1,0, (3.10

q(lf) V(Q)

(), (8= ———W,(t)

again giving us the classical equations of motion
for the observables.

For the simple harmonic oscillator the potential
energy function is V(q) = (1/2)mw?3q?, and in this
case the solutions to the equations are

q5(t)=q;0) coswt+ pj(O) sinwt,

p{(t)=p;(0) coswt —mwq 0) sinwt,
1 (3.11)
78(£) = 7%(0) cosw? — s 74(0) sinwt ,

TY1) =7Y0) coswi + mwré(0) sinwt.

Applying these operator solutions to the state vec-
tor, for example that given by (3.6), gives us back
the correct classical solutions for the observable

sector of the theory.

Thus, we have explicitly demonstrated some, ad-
mittedly simple, examples of quantum theories, of
which the observable sector is exactly a well-
known classical system. The superselection prin-
ciple ensures that superposed states are not al-
lowed as pure states of the system, the latter being
given by states with sharp values of the complete
set of (commuting) observables as defined by (2.10)
and (2.11).

IV. THE SCHRODINGER PICTURE

In the previous sections we have discussed a
method whereby a classical-mechanical system,
whose dynamics can be written in the Hamiltonian
formulation, could be embedded as the observable
sector of a quantum-mechanical theory. Because
the dynamics of a quantum theory in the Heisenberg
picture more closely resembles that of the classi-
cal Hamiltonian formulation, we chose to work in
that picture. One is more accustomed, on the
other hand, to think in terms of the Schrddinger
picture when discussing quantum-mechanics prob-
lems. For this reason we will now include a dis-
cussion of the Schrodinger picture time develop-
ment.

In discussing the Schrodinger picture, one can
either choose to work in a “wave mechanics”
formulation, or in terms of the vector space meth-
od. Wave mechanics treats the g, p representation
of the state of a system. Then the operators con-
jugate to ¢ and p can be represented by

79= —igq—; L Tt i (4.1)
The system is described by a wave function which
we denote in the following ways:

Ww)=¥(q,p)=¥(q,p,0). (4.2)
With the Hamiltonian operator given by Eq. (2.16),

36=i[8H(q,p)i_8H(q,p) i]
bq; 9p, %p; dq

the Schrodinger time development of the wave func-
tion is
Plg,p,0)~¥(q,p, ) =e"Y(q,p,0).

The Schrodinger equation is, then,
. d
z'gi lp(qypyt)=m(q7pyt) (4-3)

In quantum mechanics it is usual to expand ¥(q, p, f)
in terms of the eigenstates of 3C, thus simplifying
the problem. In this case, JC is not an observable,
so we choose not to follow this procedure. Equa-
tion.(4.3) is a first-order partial differential equa-
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tion, and so its solution follows quite simply.® We
define

' oH
b, p)= - LB g, )= LD (g g
q;
Then the equation takes the following form:
D ba, ) —di(q, D)o |#a, 0, D=0, (4.5)
a—t"’ iq,p aqi_ iq’p api q’p’ =Y, .
a form reminiscent of the renormalization group
equations in quantum field theory.® To solve this

equation we introduce the functions 4(q,p,t) and
plq,p,t), where

9 —
a—tﬁj(q,i’, t)= bJ(ZI-,P) ’ ?Ij(qyp, 0)=qj ’

o _ _ (4.6)
a_tpj(q’py t)=dj(a’p) ’ pj(qypy 0)=pj‘

Then the solution to Eq. (4.5) is
¥q,p, ) =4(alq,p,0),p(q,p,1), (4.7

i.e., the Schrodinger equation puts no restrictions
on the allowed initial form of the wave function. If
at time ¢=0 the wave function is ¥(q, p), then at
time ¢ the wave function of the system is ¥(q, p).
The equations determining g and p are, using (4.4)
and (4.6), very similar to the classical equations
of motion, apart from a minus sign in each of the
equations.

It is relatively easy to understand why this re-
sult should hold. We are after all examining a
problem of classical physics. The wave function
¥(q,p,0) is interpreted as the probability amplitude
that the system is in an eigenstate of the observ-
ables corresponding to the eigenvalues g and p.

From equations (4.6) and (4.4) it is clear that

aj(qyp’ t)ij(‘t) )
D, p,=p;(-1),

where g;(-?) and p,(-f) are the solutions of the
classical problem at time —£{. The solution to the
Schradinger equation can be written as

z)b(qypa t)=¢'(¢1(—t),p(—t),0) ’

i.e., the probability amplitude that the system is
described by the phase-space point (g, p) at time ¢
equals the probability amplitude that at time 0 the
system was described by the phase-space point
(q(=1t), p(=2)). Of course classically (g(-1), p(—1))
at time 0 are the initial conditions for the system
to be described by (g, p) at time . Thus the Schro-
dinger picture also leads quite simply to the clas-
sical interpretation of the quantum theory we have

constructed earlier.

So far we have seen how to embed a classical .
system in a larger quantum-mechanical structure.
We outlined the procedure in the Heisenberg pic-
ture initially. In this section we have seen how the
Schrddinger time development also leads us to the
same description, but along a different path. Our
discussions so far were restricted to isolated pure-
ly classical systems. In the next sections we will
examine a particular type of interaction, namely
the interaction of a classical and a truly quantum
system. Our purpose is to see if such an interac-
tion can lead to a description of a measurement
process.

V. PROPOSAL OF A MODEL FOR THE QUANTUM
MEASUREMENT PROCESS

In the preceding sections of this paper we have
discussed an unconventional treatment of classical
systems. We wish now to discuss one possible ap-
plication of this model. This application is in the
realm of measurement theory, in particular the
measurement of quantum systems.

In a measurement problem one has two separate
systems, one of which is the apparatus, or mea-
surer, while the other is the system to be exam-
ined. It is our premise that a piece of apparatus
can be described by classical physics. We pro-
pose to treat the apparatus as a truly classical
system. Thus, our description of the measure-
ment of properties of quantum systems involves
the coupling of a classical apparatus to a quantum
system.

The purpose of dealing with the measurement
process is to reproduce theoretically what is ex-
perimentally seen, if that is possible: The inter-
action between apparatus and quantum system re-
sults in a change in the “settings,” or state, of the
apparatus from which knowledge of the state of the
quantum system is deduced.

There are many levels at which this problem can
be addressed. At the first level we consider only
closed systems, about which we have maximum
knowledge allowed by the theory, in principle. At
such a level, the classical apparatus might be as-
sumed to be a closed mechanical system of the type
discussed in Sec. II. The quantum system would be
described by elementary quantum mechanics, even
if it is not an elementary system. Thus, the states
of the quantum system would be pure states and
their development in time would be by a unitary
transformation.

At a higher level, one can take account of un-
known external influences on the actual (physical)
quantum system by admitting one’s ignorance as to
the precise form of the Hamiltonian. One way to
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proceed, then, is to consider a probability distri-
bution over a set of Hamiltonians which differ from
each other by different values for the unknown ex-
ternal parameters. It is then more convenient to

use density matrices rather than pure states in the

description of the quantum system. One result of
this procedure is that the time development is no
longer described by a unitary transformation on
the space of density matrices.”

In this paper we shall restrict our attention to the
first level. We are more interested in problems
of principle than in problems of complexity. If our
model yields interesting results at the lowest lev-
el, it would then be imperative to extend it to high-
er levels dlso. On the other hand, if our model
does not yield interesting results at the lower lev-
el, and by this we mean that it will not be possible
to interpret the interactions between the classical
apparatus and the quantum system as leading to a
measurement, then we should abandon the ap-
proach. Extension of the model, in that case, to
the higher levels would be most unlikely to alter
the result.

When the apparatus is coupled to the quantum
system, how do we know if a measurement re-
sults? In our model, since we treat both the quan-
tum system and the quantum-enlarged apparatus in
their idealistic form, it is clear that the coupling
will result in a correlated total system. To begin
with we only require the following: A measure-
ment is achieved if unambiguous information con-
cerning the values of certain variables of the quan-
tum system being examined can be “stored” in the
variables of the classical apparatus. We shall re-
turn to the problem of the transfer of this informa-
tion to an observer at another time.

Our proposal is to treat the apparatus as a clas-
sical system. Is this justifiable? One can think
of experiments where the apparatus might not be a
classical system. Is, then, our model not applic-
able to such cases? In answer we note that even
if the apparatus is not strictly classical, all we
ever use of its dynamical variables is a commuting
set. We would label these the observables, and any
other variables unobservables. Then, in a sense,
the quantum-enlarged model considered earlier
would now be the conventional description of the
apparatus. We see then that there are two levels
at which a system might be considered classical:

(1) a truly classical system .

(2) a system with a commuting set of observ-
ables.

In Sec. VI we will discuss how one should pro-
ceed to couple together the quantum-enlarged clas-
sical system, and the truly quantum system, so as
to achieve an adequate description of a measure-
ment.

VL. INTERACTION BETWEEN CLASSICAL AND QUANTUM
SYSTEMS: GENERAL CONSIDERATIONS

In this section we examine the construction of in-
teractions between classical and quantum systems.
Following the spirit of this paper we restrict our
attention to general considerations. We concen-
trate on the general features which characterize
the interacting theories and return to discuss the
interactions in more detail in a subsequent paper.®

As emphasized in Sec. V, the sole purpose of
embedding a classical system into a larger quan-
tum framework is to allow a classical system to
interact with a truly quantum sustem for the pur-
pose of achieving a measurement. Thus we must
examine what interactions can be constructed be-
tween the quantum-enlarged classical system and
the quantum system under examination. We must
examine how, if at all, such interactions affect
the classical nature of the apparatus.

Let us first introduce some notation. We denote
the algebra of dynamical variables of the quantum
system by {t}. The quantum system is fully speci-
fied when the energy operator, the state vector
and the commutation rules of the algebra are
known. We write the Hamiltonian of the isolated
quantum system as X(7), where {n} is some subset
of the quantum variables. The Hamiltonian opera-
tor for the uncoupled systems is, then,

9H(w)
3Cy= AT

et L X(1) . (6.1)

To describe the measurement process within the

overall dynamical framework we generate, in the
Hamiltonian operator for the total system, a cou-
pling between the apparatus and the quantum sys-
tem. In this way, the measurement process will

be seen to occur as the natural time development
of the system. The Hamiltonian will then be

GC::}C0+3(51M ’ (62)
where
Hipe= B(w,m;5 %5 4) . (6.3)

Here {£'} is some subset of the quantum variables,
and we include an explicit time dependence in the
interaction term to allow for more general cou-
plings. The effect of the interaction (6.3) will be
felt by both apparatus and quantum system, and in
the case of the apparatus it may even be sufficient
to destroy its classical nature.

It is necessary now to understand exactly what is
the classical nature of the apparatus. What prop-
erties of the apparatus ensure that it is classical?
In fact there are two properties which satisfy this
requirement. The first is a statement about clas-
sical observables: The set of classical observ-



ables must form a commuting set. The second
property is a statement about the classical state.
To discuss this property it is convenient to make
use of the Schrddinger picture, If the state of the
(quantum-enlarged) classical system is chosen ini-

tially to be an eigenstate of the observables w,,,

4, 0)= [ (6.4)

then for all times >0, the state vector lz,b, t) will
also be an eigenstate of w,,. This property follows
directly from the discussion in Sec. IV. We may
phrase this another way, using the fact that w,*
are superselecting operators: If the state of the
system is initially chosen to be pure, then at all
future times it is also a pure state.

The statement of this latter property in the
Heisenberg picture is as follows: If the state of
the classical system, denoted by |zl)), is chosen to
be an eigenstate of w (0), then it is also an eigen-
state of w (?).

If we allow interactions of the very general form
(6.2) between classical and quantum systems, then
it is relatively straightforward to see that the
property of the classical state, which we have just
introduced, will be destroyed by almost all such
interactions. The reason for this result goes as
follows: Let us denote the initial state of the ap-
paratus by Izl)) and the initial state of the quantum
system by |¢). Then the initial state of the total
system (apparatus plus quantum system) is

[¥,0)=|v)® |¢). (6.5)

The choice (6.4) is made, as usual, for |zl)). As a
direct result of the interaction term (6.3), we can
no longer claim that |\Il, t) is also an eigenstate of
w,,- In fact the only cases when this would occur
are if the interaction has no effect whatsoever on
the apparatus, or if the quantity being measured is
a true attribute of the quantum system. The first
case is clearly uninteresting for our present pur-
poses. In the second case, by attribute of the sys-
tem we mean that |¢) already is an eigenstate of
3Cine, i.e., we can predict with certainty the result
of each experiment. However, in all cases except
these two special cases, I\If, t) is no longer an
eigenstate of w,,. In fact, this is merely another
manifestation of the nonseparability of quantum
systems.!

To the extent that this property of the state of a
classical system is not retained, it may be said
that the classical system does not remain purely
classical if it is allowed to interact with a purely
quantum system. '

But this is just one of the classical properties.
Let us now examine how interactions of the form
(6.2) affect the classical nature of the classical ob-
servables. To discuss this property it is conven-
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ient to use the Heisenberg picture, as in that for-
mulation it is the dynamical variables which de-
velop in time. The classical nature of the appara-
tus observables is characterized by both of the fol-
lowing properties:

(i) w*(¢) are observable for all times ¢

(ii) w*(#) and w"(#’) are compatible operators for
all times ¢ and /.
The first property tells us that the “trajectories”
of the apparatus observables are observable for all
times. The second tells us that we can measure
the different trajectories without disturbing the
measurable aspects of the system. These two
properties are not independent of one another. The
first requires that the commutator

[w*(#), w(0)] (6.6)

vanish for all times #, and for all u,v. To satisfy
(ii) the commutator

[w(8), w"(2)]

must vanish, for which it suffices to consider com-
mutators of the form (6.6) because

[wh(2), (2] = ¥ [w* ( - '), w*(0) ] ™", (6.7)

We note that for the uncoupled classical system
properties (i) and (ii) are automatically satisfied
because the Hamiltonian (2.16) is at most linear in
the unobservables 7,.". ,

We now turn to the general Hamiltonian (6.2) to
see whether or not these equivalent properties of
the apparatus observables are retained in the time
development of the interacting system. Clearly,
if the coupling function @ is quadratic (or higher)
in the unobservables 7 ,* the apparatus observables
will no longer be characterized by (i) and (ii) after
the interaction has taken place. On the other hand,
if the coupling function is linear in 7, * this result
does not follow. In that case it may occur that
properties (i) and (ii) are retained even in the
presence of some interactions of the form (6.2).

From the foregoing discussion it is clear that
couplings between a classical system and a quan-
tum system could destroy the nature of the classi-
cal system. Obviously, the use of a classical ap-
paratus makes sense only if the apparatus is also
to be classical after the interaction has taken
place. However, since the “classical state” cannot
be retained, except for interactions which are not
general enough for our purposes, we propose that
we restrict our attention to interactions which pre-
serve, in some sense, the classical nature of the
apparatus observables.

This is a weaker requirement than the possibility
of requiring the classical nature of the apparatus
state to be preserved. It is also the minimum re-
quirement, since if it is not satisfied, it would not
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be possible to consider the apparatus as being clas-
sical, in any sense, after the interaction has oc-
curred.

We formulate this requirement as a principle of
integrity. It is the integrity of the classical ob-
servables which is to be preserved. In so far as
comparison with experiment is concerned, we may
formulate a weak form of the principle. This
merely requires that after the interaction has
ceased, the apparatus observables should retain
their classical integrity. While the interaction is
taking place, no such restriction is enforced. This
form of the principle is most useful when discuss-
ing interactions which are explicitly time depen-
dent.

We may also formulate a strong form of the prin-
ciple, according to which the interactions should
preserve the classical integrity of the apparatus
observables at all times. This more restrictive
form is useful when we are dealing with time in-
dependent interactions.

Whichever form of the principle of integrity that
we choose to work with, we restrict our attention
to interaction terms of the form

Hine = 0" (w3 ns T + Mw; €5 1) . (6.8)

Here {11’} and {6} are subsets of the quantum vari-
ables. We again include the possibility of an ex-

plicit time dependence.® Such interactions (of an

impulsive type), where the time dependence is of
the d-function type, have been considered previ-

ously.?

The form (6.8) for 3¢, , is not, however, suffi-
cient to guarantee that the apparatus observables
retain their classical integrity. Both the primary
coupling functions ¢* and the secondary coupling
function 7z depend on unspecified quantum variables.
What we need to do is to find what furiher restric-
tions, if any, on the functional form of these cou-
pling functions can be deduced by requiring the
principle of integrity to be satisfied. Or, if that
fails, we need to derive criteria which can be used
to check different models. Clearly it is not a p7i-
o7i obvious that any interactions would preserve
the classical integrity of the apparatus observ-
ables.

We have derived, in the case of the strong form
of the principle of integrity, a set of criteria which
can be used to check whether or not a given inter-
action will satisfy the principle. This analysis,
along with its illustration in the case of a simple
example will be presented in a subsequent paper,
II in the present series. There we will see that it
is possible to have an interaction between a classi-
cal and a quantum system which satisfies the prin-
ciple of integrity. The example can be viewed as

a variant of the Stern-Gerlach experiment, where
the interaction is of an artificial form.

VII. CONCLUDING REMARKS

The purpose of this paper was to introduce a new
approach to the description of the quantum mea-
surement process. We have concentrated mainly
on our major tool: the description of a classical
object in a quantum-mechanical fashion. We have
shown how to embed a classical Hamiltonian sys-
tem within a quantum framework with twice the
number of degrees of freedom. The concepts of
superselecting operators and unobservable dynam-
ical variables have been essential in setting up the
formalism.

In Secs. V and VI we have proposed to use this
tool explicitly in the measurement process. We
treat the apparatus as a classical system and
couple it to the quantum system under investiga-
tion. The coupling is achieved by making use of
the model introduced in Sec. II to describe the
classical apparatus.

We have considered the question as to what in-
teractions should be allowed. Use of a classical
apparatus leads us to require that the apparatus
should remain classical. Nevertheless, we saw
that the state of the system does not remain clas-
sical in nature. ‘We formulated a principle of in-
tegrity for use at this juncture. It is the integrity
of the classical observables which is to be re-
tained when interactions occur. The principle is
formulated in both weak and strong forms:

(i) weak form. The classical observables of the
apparatus must retain their classical integrity
after the coupling between the apparatus and quan-
tum system has ceased;

(ii) strvong form. The classical observables of
the apparatus must retain their classical integrity
at all times, even when interactions with a quan-
tum system are allowed.

Requiring that the interactions satisfy this prin-
ciple is the weakest requirement we can impose
if we wish the apparatus to be “classical,” in any
sense, after interacting with the quantum system.

We note, in passing, that the principle has been
formulated in the Heisenberg picture. We defer
to a subsequent paper an analysis, also in the
Heisenberg picture, of the restrictions such a
principle places on the allowed interactions, il-
lustrating by means of a simple example.

We must emphasize that in our work so far we
have restricted our attention to idealistic realiza-
tions, where the quantum systems are closed sys-
tems, and maximum information about them is
known. The actual measurement problem involves
the recording of data, and, thus, the general prob-



lem of irreversible processes. In the treatment of
irreversible processes one is led to a discussion
of thermodynamic systems. If our approach yields
interesting conclusions at its present restricted
level, it will become necessary to extend it to a
more realistic level.

There exists an interesting connection between
the ideas we have presented here and recent work
in nonequilibrium thermodynamics.'®!! A crucial
problem in nonequilibrium thermodynamics is the
definition of a noequilibrium entropy in terms of
the concepts of classical mechanics and the ex-
planation of its monotonic increase on the basis of
Hamiltonian dynamics. Poincaré proved, a long
time ago,!? that there cannot exist a phase function
which is of definite sign and which increases mono-
tonically to a maximum under Hamiltonian evolu-
tion. Thus the second law of thermodynamics must
have its dynamical counterpart in the study of dy-
namical variables other than phase functions. This
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problem has been investigated recently by Misra,!!
whose analysis suggests quite strongly that if a
classical system is to display a thermodynamic
behavior its algebra of dynamical variables must
be noncommutative. Our quantum-enlarged clas-
sical systems automatically provide a rich frame-
work within which a true entropy function may be
constructed. If such ideas prove useful, they will
answer in part some of the questions raised in the
Introduction.

ACKNOWLEDGMENTS

This work was supported in part by the U. S.
Department of Energy. One of us (T.N.S.) would
like to acknowledge the hospitality of the Aspen
Center for Physics where part of this work was
completed. We would also like to acknowledge
Dr. F. J. Belinfante for his helpful suggestions
which have contributed to the improvement of the
text of this paper.

*Present address: ICTP, Miramare, Trieste, 34100
Ttaly.

ISee for example the excellent book by B. d’Espagnat, and
the many references contained therein: Conceptual
Foundations of Quantum Mechanics, 2nd ed. (Benjamin,
Reading, 1976).

2This same process of destruction (or modification) of
correlations may also underlie the irreversible process
involved in the indelible actions produced in measure-
ment. But a discussion of such a topic is beyond the
scope of this paper.

3E. C. G. Sudarshan, Pramana 6, 117 (1976).

G. C. Wick, A. S. Wightman, and E. P. Wigner, Phys.
Rev. 88, 101 (1952).

%See for example E. T. Copson, Partial Diffevential
Equations (Cambridge Univ. Press, Cambridge, 1975).

8See for example the paper of S. Weinberg, Phys. Rev.
D 8, 3497 (1973).

"F. J. Belinfante, Measurements and Time Reversal in
Objective Quantum Theory (Pergamon, New York,
1975).

8T, N. Sherry and E. C. G, Sudarshan, CPT Report No.
319 (unpublished); S. R. Gautam, T. N. Sherry, and
E. C. G. Sudarshan, CPT Report No. 342 (unpublished).

%I such cases the time development factors exp (+i JC ¢)
should be replaced by the time-ordered quantities
T{expl+i fot JC(s)ds]}. By means of a time-dependent
interaction it would be possible to artificially start and
stop the interaction between the apparatus and quantum
system.

107, Prigogine, C. George, F. Henin, and L. Rosenfeld,
Chem. Scr. 4, 5 (1973); I. Prigogine, F. Mayné, C.
George, and M, de Haan, Proc. Natl. Acad. Sci. USA
74, 4152 (1977).

B, Misra, Proc. Natl. Acad. Sci. USA 75, 1627 (1978).

"H, Poincaré, C. R. Acad. Sci. 108, 550 (1889).



