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1. Quantum Dynamical Semigroups.

Let 5 denote a quantum system with associated Hilbert space F . Asis well known, a

state of S is described by a self-adjoint, non-negative, trace one, linear cperator @ on
"‘FE called the statistical operatar or, more commaonly, the density matrix. The expeclation

value of an observable of S , represented by a linear self-adjoint cperator A on ’fe a1
given by <A> =tr (?A) ( whenever the expression at the r.h.s. exhists).

We consider a system S evolving irreversibly under the action of its'surrouﬁ%‘g’s R,
which we think of as an unexhaustible energy resermir. for S . Whenever S and R are
initially uncorrelated and the decay time of the reservoir's correlations is much smaller than

the typical relaxation times of the sysfe:n,the dynamical evolution of the state of S is descri

bed to a good approximation by a Markovian master equation of the form
d
%9 =Lo G

where L is a linear transformation ("'superoperator') acting on the space T($€) of linear

operators on ® having finite trace. The integrated form of (1.1) writes

€=?(t: =‘3Lt§>(0)=T{-, ?(O)f, t}o) (1.2)

where Tt is expected to have the following properties:
(1 T, is positive, namely ?},O implies Tt P> o
(ii) Tt preserves the trace, namely tr { Tt 4 Y=1tr( ¢ ) for all SD GT(}e),
(i) Tt+s Q= Tt ( Ts? D5 T = identity operator on T(3€);
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Giv) _tr-—[(Tt P )A] is a céntinuous function of t for all @& T(%) and for all

A €. B (% ), where B (%€) is the space of linear bounded operators on ¥ .

Properties (i) and (ii) are demanded by the conservation of probability; (iii) is the semigroup
property which formalizes the Markovian approximatién; (iv) is a physical continuity require-
ment for expectation values of 6bservéb]es.

Conversely, if Tt sk 2O ,» is a one-parameter family of linear operators on T(%€)
satisfying conditions (i) - (iv), there exists a (generally unbounded) linear operater L on
T(3€ ) , with dense domain of definition D(L), such that eq. (1.1) holds for all PE D) [1] 5

The family Tt gives the dynamics in the Schridinger picture. By duality, we can define

a dynamics Tt* in the Heisenberg picture, acting on B(3€), as

te[9(T*A)] = te[(T 9)A], peT(), AcB(e) a3

Then Tt* satisfies T e

(i T‘t" is positive ;

(ii") T‘l* 1=1 ;

(iii") T:(+s = T':‘ T;‘ 5 T; = identity operator on B(3£ ),
as well as the continuity property following from (iv).

fxctual}j?,‘;g turns out that the reduced dynamics Tt of the open system S must satisfy on
physical grounds a considerably more stringent constraint than the positivity property (i)
(or (i")) . This requirement is called complete positivity and can best be expressed in the
Heisepberg picture as follows. Let n be an arbitrary positive integer and, for any given n,
let {'f-f""’ &fﬂ}, ¢, €% ,i=1,...,n, and {Al,..., An} : Ai € B(P€), i=1,...,n. be

n arbitrary Hilbert space vectors and n arbitrary bounded operators. Then 'I;* must satisfy

) _Z{ ('-PL, 'Tt.,*(f\fﬂi) ‘fé) 20, 30,
b,n

L4

A linear map @ on B (P6) satisfying (i'") is said to be completely positive. Taking

n = 1in (i") we see that a completely positive map is positive. The converse is in general
false.

Complete positivity is not an intuitive property of the reduced dynamics. Cn the other
hand, it has a sound physical foundation. Indeed, it is a consequence of the assumption that
the total dynamics of the system plus its surroundings, regarded globally as an isolated
system, is Hamiltonian [2, 3] - Alternatively, it can be proved by an independent probability

argument, even without making reference to the foregoing assumption [ 4] . In particular, a
g g going P P
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Hamiltenian dynamics is completely pesitive.

A (quantum) dynamical semigroup is a one parameter family Tt , t >0 , of linear

bounded operators on T (%) satisfying conditions (ii), (iii), (iv) and (i"). From the above
discussion, we conclude that the reduced dynamics of a quantum system is described in the

Markovian limit by a dynamical semigroup. The operator L appearing in eq. (1.1) is called
the (infinitesimal) generator of the semigroup. The general form of L was given in[41for

L bounded and independently in [3] for a finite- dimensional Hilbert space [5] g

2. Application to isotropic spin relaxation.

In the second part of this talk, we describe an application of the theory of dynamical
semigroups to isotropic relaxation of two coupled spins, which is relevant in optical pumping
phenomena [6, ?] . We find that complete positivity implies stringent restrictions on the
reduced dynamics of the spins, in the form of inequalities among measurable parameters
(such as relaxation rates of the irreducible spherical components of the density matrix). Our
inequalities are stronger thanthose previously found by other authors [8] . For comparison
between the conditions of complete positivity and of simple positivity, we examine as an
illustration the simplest non trivial case of isotropic relaxation of a spin 1 magnetic moment.
In this example, we exhibit explicitly the restrictions on the dipole and quadrupol?ﬁ_ﬁxation
rates imposed by positivity, and find that they are considerably weaker than those required
by complete positivity. For similar comparisons in the case of axially symmetric spin 1/2
relaxation and of dynamical maps of two-level systems see [3, 9] . For a
detailed discussion of the subject see our forthcoming papers [10, 11] .

For the applications that we have in mind, we can restrict'our considerations to N-level
systems. In this case, we can make the identifications %6 = c”  anaB (%) = T(K)=M(N),
the algebra of N x N complex matrices. The result of [3] can be stated in a slightly

more general form as follows.

Theorem 2.1. [3] . Let {G“ € MN)y wli=1; 25 sody Nz} be a complete orthonormal
set (c.o.n.s.)in M(N), i.e. tr (G:i GF') = 5;9 " . Then, a linear transformation

L : M(N) — M(N) is the generator of a dynamical semigroup iff it has the form

”3
L: 9=+ Lyp= %.ggﬁddﬁ{[a‘*?’G;]+[G°"?G;]} (.13

for all ?e M(N) , where [lZJ



s d = Cl (2.1a)
d[S 3
and
N
Z ; d y, 2 0 (2.1b)
apad 4 dp IR
for all vectors {yd }.,{ i o such that
ug(trGa‘)yq = o _ (2.1c)

Remark 2.1. Eq. (2.D) autématically incerporates the condition tr(L p ) = 0 and eq.(2. la)

ensures that (L )* =L * . The requirement of complete positivity is expressed by (2.1b) and

{2.:1c)

Remark 2.2. Define

A

G, = G, -[(trG)/N]1 (2.2)
and ’;5;
»?
HH" = b ZP {era)d,6,-tra)d, 42} .9
Then (2.1) can be rewritten as
L:g—Le=-ily 5’]‘* dfler. 616, 5 @

z o Bt P
The decomposition (2.4) of L into the sum of a Hamiltonian part LH =i [H, J plus a

dissipative part LD =L -L, isunique, namely it does not depend on the choice of the

H
c.0.Nn.5. {Gd} » partic:zular, choosing G_z = Fd , where FNZ =(1/VN)1 (so that
tr Fi =0,i=1,2, ..., N'=1) we recover the form (2.3) of [3_] ., namely
N4

L,?= —LfH,f]+%Z*cL‘, {[FLgJ, }E*]+[F“P§j.*]}) s

L,o;=
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where {Cij} is a self-adjoint non-negative matrix.

We consider the Markovian relaxation of two coupled spins T and T . The situation
that we have in mind is the relaxation, in an external magnetic field. among the Zeeman
sublevels of an optically pumped atomic vapor with hyperfine structure [6, 7] . Here T
stands for the electronic angular momentum and T for the nuclear spin . In typical experi-
ments, mean free times between collisions are much smaller than spin relaxation times, so
that the Markovian approximation is justitied. Then the density matrix of -I. + T satisfies
a master equation of the form (1.1) and N = (21 + 1)(2] + 1). We shall confine our considera-
tions to the case when the external magnetic fields is sufficiently weak that the relaxation is

to a good approximation isotropic. This situation has been frequently studied experimentally

[6, ?] . The isotropy condition reads

L (ARpAR)*) = AR)(Lp) AR, 2.6

for all P € M(N) and for all R € SO(3), where A is the tensor product of the two irredu-
(D M

cible representations D and D of SO(3) corréesponding to spin 1 and ] respectively.
[t is convenient to write (2.1) with the choice G, =

o TKQ(FG) (FiiGs JL<=Tlsven(I2])
K= [F-G| ,...,(F+G); Q =—K, ..., K), the standard basis of irreducible spherical tensors

[13] : %
(KIFG)

AR) T (F AR < 2D, (0 T, (F6). @.7

Then, using (2.6), we get

i? = Lf’
- % % 2 AK(FG,F‘G'); {[TKQ(FG)‘F, T;(é(F'G')*]

F’ G’ F" G'

+ ['I}Q{Fe), f‘l:q(r"o')*]}

= -L[H, ?] + 5 o A [(FGF'E")

K F6,F.6

2.8

+§ {[iQ(FG-)P, iq(F'&'}*L ["f:a(Frr), p 'f;qu'e')*”,



where

H=2h 1 2.9

the hF being arbitrary real constants (note that H is defined up to an additive multiple of the

unit matrix 4 ). Define the matrices Ak (K=1,...2(1+] )by

(AL = X (F6Fe). 2.10)

FG,F6

Then, the complete positivity conditions (2.1b), (2.1c) are equivalent to

AK>/OJ K=A4,...,2(I+7) (2.11)
and
Z Y. A (FF, 66)y, (2.12)
for all{yF} such that ; V2F + 1 Vg = 0. Using the identity
b 2. T..(F6)T _(F&) T _(F'e")*
' a ke LM KR
K+L+Flt+6 5‘ F" F L . (2"13)
= (-) VZK+1 GG,, 6 6" kf L (FFY
and the relation T# (FG) = & laiin T (G F). eq. (2.8) gives
W _ i i "n#* (2. 14)
LT;—M(GG) = ; alf_(FF,(rG)’l:H(FF)
where

o, Z K+L+F'+ Ged FFL "
B:.CFF,GG)_—_- 4 -) VIR¥T ) o ot sof A (FGFG), (2.15)

The inverse of relation (2.15) is

cr'GL

. K+l+1-F-6'
AK(FG,FG)-;.%-: =) 2L+A {,—: }(}‘ (FIE 66). (2.16)

The master equation (2.8) can be written in terms of the expectation values of the T_ _(FF")

KQ
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(the standard irreducible components of the density matrix), {TKQ(FF )):tr[?TKQ(FF )]

as [14]

1
d T (FFI> = -2, Y (FFlee)< T, (667>, 2.17)
dt K@ &6 K K®
The coefficients yK(FF, FF), afK(FF, GG) (F # G)and a/K(FF , FF')(F # F') represent
respectively the decay rates within the hyperfine multiplef F, the transfer rates between

the multipleks F and G and the decay rates of " hyperfine coherences". The remaining
3’" s are usually expected to be small by the secular approximation if the hyperfine splittings
are much greater than the natural widths. Inserting (2.16) into (2.11) and (2.12) we get the

set of inequalities among the rates XK(FF‘ ,» GG') which follow from complete positivity

and which therefore must be satisfied regardless of the interactions which are responsible
for the relaxation. These inequalities are stronger than those previously reported by Omont
[7] . Indeed, Omont's inequalities only amount to the condition of nonnegativity of the dia-
gonal matrix elements XK(FG, FG).

A particular class of master equations for the system i35 —]- having the form (2.8) can

be obtained from a model in which the effect of the reservoir on the system is simulated

by the action of a stationary isotropic fluctuating Hamiltonian

~ FG e
Q= 2 T(Fe) Vb 7 01e
F, 6,K,Q KQ ka
with Gaussian correlations

<V, Vo)

Q 2.19)

= J\K(FG,F‘G') ) 8:['_ exp [-(b-s)z/ezj.

kKK Q'
K R =

The Markovian limit is obtained by letting § i) ©  (white noise) and one obtains a generator
of the form (2.8), the XK{FG, F'G") being those in (2.19) and H being the Hamiltonian of the
isolated system T - -j. (of course, the actual H is only approximatively of the form (2.9)
since, besides the rotationally invariant coupling between T and -]. , it also contains the
small term due to the weak external magnetic field). The model based en (2.18) an (2.19)

corresponds to a singular coupling to an "infinite temperature' bath. It is expected to give

an accurate description of the spin dynamics in actual situations, since kT is in general
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much larger than the hyperfine splittings. In this model , the matrix {.Cij } of (2.5) is real
2 . .
whenever we choose Fi = F.l* (i=1,...,N"=-1). This implies as expected that the central
state f = »ﬂ/ﬂ (the equilibrium state at infinite temperature) is stationary and that
-]
the dynamics satisfies detailed balance with respect to Po [15, 9] . In general, for a
dynamics of the form (2.8), if the stationary state is unique, by rotational invariance it will
be of the form P . P 1 , and one can prove that any initial state will approach j)
@ F F F (=]

as t —» o0

Next, consider the particular case T = 0 (zero nuclear spin). In this circumstance, we
have 7\1{ (FG, F'G") = 1]{ and a’K(FG, F'G") = B’K . Furthermore, conservation
of probability implies afo = 0 . Complete positivity is equivalent to '}\_K % 0 so that by
(2.16) we have [16, 17]

27T '
2T+4+Lt K | S - 5

Z &) (2L+4) 7 > O, (2.20)

L=A4 K T T L

These are the inequalities which must be satisfied by the relaxa:(ion rates of the multipole
components of the density matrix. As an example , we consider the case ] = 1. There are
two relaxation rates, the dipole rate 3’1 and the quadrupole rate a’z , and (2.10) gives
(see also L-?] ) .

4

3 £ LA (2.21)
AR AR A
The simple requirement of positivity namely condition (i) of Sec. 1.,is expressed by [] 1]

053’2 £ 33'4 (2.22)

which is weaker than (2.21) [18] . To our knowledge, all experimental data are consistent

with (2.21) [6, 7] .
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