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1 Quantum Measurement and Nonunitary Dynamics

The problem of measurement in a quantum system involves the interaction of a
classical system with only a small number of degrees of freedom (‘measuring appa-
ratus’) coupled to the quantum system which is being subjected to measurement. It
has been the practice to think of the measuring apparatus as a quantum system with
a very large number of degrees of freedom treated in the classical limit. It is however
possible to formulate! the problem in such a manner that the measuring appartus is
a, classical system with a finite number of degrees of freedom.

This formulation involves the perception of the classical system as the projection
of a quantum system. Along with a classical system with its phase space w is a
vector field 4/dw. Together they constitute the phase space Q of a quantum system.?
If we proceed to the Schrodinger picture of this phase space and treat w as the
coordinates, the projection is obtained by demanding that only the absolute values
of the amplitudes | ¥(w) | are observable. The phases of ¥(w) are unmeasurable. It
can now be seen that phase space trajectories in w are well defined if the hamiltonian
in Q is a vector field in w. Elsewhere® we have analyzed this formulation and shown
it to be able to reproduce the traditional Stern-Gelach experiment and other such
systems.

It can be seen that the crucial step in passing from superposable complex prob-
ability amplitudes to nonnegative standard probabilities involves the loss of phase
information at some stage. In the traditional method the phase is lost in the passage
to the classical limit of a large quantum system. In our formulation mentioned above
it is the postulate of superselection and consequent unobservability of phases!. To
deal in general with such processes it would be desirable to consider an input-output
mechanism where phase information is not necessarily preserved. This is provided by
the formalism of dynamical maps which has seen such significant development during

the past quarter century.
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The method of dynamical maps*® is not a theory but a framework; any successful
measurement theory or more generally any non-destructive process which develops a
quantum system may be cast as a dynamical map.

2 Dynamical Maps

Let p be the density operator of a quantum system, a traceless nonnegative self
adjoint operator which specifies the quantum state completely. For any dynamical
variable represented by a bounded operator B, the expectation value

< B >= tr (pB)

is assigned. A dynamical map is a linear map from density operator into density
operators:

p—L(p): Apy+{1=2A)ps = AL(p1) + (L= A)L(pa); 0K A< L. (1)

Clearly such linear maps constitute a convex set: if £, and £, are dynamical maps,
80 is

L=pLli+(1—-p)L;; 0 p<L

It would be desirable to find the generating extremal elements of the set of dynamical
maps: those for which

L=pli+(1—-p)L;, 0Sp<1l=L,=L,=1L.

This is a difficult problem but some progress can be made when p is finite dimensional.
In the rest of this paper we shall restrict attention to systems whose density operators
can be represented by NV X N density matrices.

The conditions on p are:

Brs =1 (hermiticity),
trp=1  (normalization),

ztpz >0 (nonnegativity ).
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If the dynamical map is described by
Pra = Brr’,ss.’pr"s’

then
Brr",as’ — B”:,”w {he!lﬁ.ltl(‘.lty),
B,y sy = 0p,,  (normalization), (2)

z:y:" Brr’,aa" TaUs S O(noﬂﬂegati\"ity) .

In the pair of indices r#’, 8¢’ the N? X n? matrix B is hermitian and can be written
in terms of its eigenvalues:

—Z @) (@)eio(a) (3)

but the positivity condition does not guarantee that all the n{a) are positive. In the
special case n(a) < 0 we refer to the dynamical map as ‘completely positive’®.

Not all dynamical maps are completely positive as seen by the complete classifica-
tion of all extremal maps by Gorini and Sudarshan A simple example is given by
the map

p—p"
has a B with eigenvalues 1,1,1,—1. Similarly

p=tl=p

has a B with eigenvalues 1, 1,1, —1.
The completely positive maps form an important subset of maps. In this case by
absorbing the numerical value of the nonnegative eigenvalues into the definition of ¢

we may write:
p— Z s(a)pst () ;Z ¢ (e)s(a) = 1. (4)

It is clear that this map lea.ds to nonnegative norma,hzed density operators. The map
is fully characterized by the v < N? matrices ¢{a). We recognize that if the ¢{a)
form an acceptable set so do

n(a) =U(a)e(@)V*; nosum on a. (5)
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Hence V and U(a) are v + 1 unitary matrices with are otherwise unrestricted.
Consider the Kronecker product p X x where Xq4 is v X . Let /W, .5 be any
Ny x Nv unitary matrix in the Kronecker product space. Then the map

pxx=R—WRWT (6)
is unitary. In explicit index notation
Rra,a,@ G Wra,a'rRr‘r,a'J(Wa;Ba Srﬁj‘-

we now take the partial trace
Pre = Broysa
Then
Pre = Prs = Wra,rfﬁ(Wm,sfs]'x,saprfs'

is a dynamical map. In particular if only x,,; is unity with all other matric elements
vanishing

Prs — P’,,., = Wroz,r-"l(waa,a’l)‘pr‘a’- (7)

This is of the form of a completely positive map with
Cro (UJ = ertx,r"l' (8)

Conversely, given any completely positive map we can consider it as the restriction of
o unitary evolution for an enlarged system. Clearly the enlarged system need have
only nu states: the ‘reservoir’ need have only dimension v. The dynamics of the
enlarged system is not unique since only the subset W, .+, enter the characterization
of the dynamical map.

3 Characterization of Extremal Maps
We now proceed to characterize the extremal dynamical maps. Towards this end
we recognize that the matrices¢ form an inner product vector space v with scalar

product.

(s{a),¢(8)) = ¢ru(e)srs(B) (9)
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with dimension N?. By choice of ¢, distinct values «, § make them orthogonal. The
map (4) is invariant under the orthogonal group

s{a) = D Masc(B) (10)

A

where M is any orthogonal matrix. We shall use (5) and (10) to simplify the extremal
elements.

We note, first of all that if and only if the map (4) is not extremal then the
matrices ¢(a)¢*(8) are not linearly independent®. The ‘only if’ part is easy to prove:
if

Mass*(@)s(8) = sast(a)¢(a) =0, (11)

(without loss of generality m assumed to be hermitian and diagonal !) then

(1 - pa)e(a)*(a) = s(a)pe* ().

B3|

S+ (o (o) +

But

@) = i+ pac(a) ¢"(a) = /1= pac(e)
both satisfy (4) and they define dynamical maps. To prove the ‘if’ part, we recognize
that if
Ast(@)ps™ (a) + (1= A)¢™(a)ps " (a)
= ¢(a)os*(a)
then the matrices ¢ span both ¢4, ¢4, It is therefore possible to write

and, by virtue of (4),

Choosing

we have proved sufficiency.
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Since no more than N matrices can fail to satisfy (11) it follows that for every
extremal map v < N.

4 The General Form of Extremal Completely Positive Maps
The case v = 1 is the standard unitary map since (4) reduces to the unitarity
condition. So the first nontrivial extremal completely positive dynamical map is for
v =2
¢*t(1)e(1) +¢7(2)¢(2) = 1.
Choose U(2) =V to diagonalize ¢(2):

Then
cwsw = (0 9.

2
sin” 8,

By choosing U(1) properly we could transform ¢(1) to obtain

__ [ sind, 0
f(ll_( 0 siné?-,,)

Therefore the most general extremal completely positive dynamical map is of the form
sin @ 0
¢%(1) = . .
$*(1) ( 0 sin 8, )

@ = (" op, ) (12)

cos 6,

r

together with transformation of the type (5).
For larger values of v we may proceed by a modification of this method. We could
use U(v) =V to diagonalize ¢() to obtain

cos f, 0

0 cos f
¢(v) = ?

cosf,
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It follows that

sin? 6, 0
¢t()e() + ¢t (2p(2)+...+¢T(w—1)(v-1) = 0 sin” 8,
sin” 6,

So if we define

sin 4,
it follows that
¢'(L)e’'(1) +¢t(2)' +...+¢"H v —-1)'(r—-1) =1.

[If some sin @ vanishes we may define the k-the column of all ¢(p) arbitarily without
changing the results !|. The problem is reduced to the question of constructing v — 1
matrices ¢’(a).

5 Discussion

In this paper we have outlined the problem of dynamical maps with special attention
to completely positive maps and their extremals. In all cases these maps could be
considered as contractions of the unitary development of a larger system. The larger
system may be thought of as the system under study being coupled to a reservior.
The reservior need not be very large: in fact in the general case it need be only
vXv < N?xN?and in the case of extremal maps only ¥ X ¥ < N X N. The general

form of ¢(a) in the extremal case is:

¢(v) = U p)CV (v)
¢(v-1)=U@w-Lv)S.U(v-Lv-1)C,_,\V(v-1);
¢(v=2)=Uw-2v)S.U(v—-2v-1)5,1

Ulv-2,v-2)C,5V(v-2);
¢((wv=-3)=Uwv-3v)S.U(v-2v-1)S,_,
Ulv-2v-2)S,_.U(v-3v-3)C,_3V(vr—3)

(14)
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and so on. Here C,, S, are the diagonal matrices.

cosfy ,

cos b, ,

sind,,,
Sp = (15)
sin 4, ,

Ul(a; 8),V(8) are suitable unitary matrices.

Any scheme for measurement and loss of phase information or partial loss of phase
information must fall under this classification.

Other aspects like viewing quantum measurement as a problem in symmetry break-
ing have interested Yu'val Ne’eman; it is in honor of his sixtieth birthday that this
article is contributed.
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