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The generalized states of a quantum system obtained by analytic continuation of a dense subset of den-
sity operators and their time evolutions are studied. The time evolution of metastable states is computed
using the generalized states. Certain model theories are taken for explicit study. For factorizable Liou-
ville operators the asymptotic states are shown to give line shapes. Nonfactorizable Liouville operators
and their generators are investigated. The generic cases are shown to be contractions of suitable
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I. INTRODUCTION: THE TWO ROLES OF TIME

Time enters physics in two different ways: once as
“duration” and once as ‘““history.” Mechanics and none-
quilibrium thermodynamics are the two disciplines where
time manifests itself predominantly in these two aspects,
respectively.

For thermodynamics in equilibrium Gibbs has intro-
duced the generalized notion of a dynamical state as a
phase-space ensemble. Thus, proceeding from mechanics
to equilibrium statistical thermodynamics, the states of
the “‘same system” are enlarged. Without such a general-
ization for a classical statistical system there would not
be a state that is invariant under time evolution. For a
quantum system with nondegenerate energy levels such a
situation does not obtain.

In complex mechanical systems even with a well-
defined Hamiltonian, the usual method of integration of
the equations of motion fails: as demonstrated by Poin-
caré [1], this obtains by virtue of multiple resonances and
hence vanishing “energy denominators.” These nonin-
tegrable “large Poincaré systems” can be integrated [2] if
we analytically continue the class of states into a larger
class of states that are no longer points in phase space but
are fuzzy patches in phase space with dynamical evolu-
tion being viewed as a passage from phase-space fuzzy
sets to other fuzzy sets. These are expected to yield con-
traction semigroups [3], except for integrable systems
where the time evolution is unitary and objective.

We shall restrict our attention to quantum systems and
their time evolution. We want to explore the conditions
under which the time symmetry of evolution is broken
and metastable states decay. Given a (time-reversal-
invariant) Hamiltonian evolution, any metastable state
can manifest irreversible decay, yet the irreversibility is
“time-reversal invariant.” In the course of this investiga-
tion we will see how the line shape of an unstable system
is obtained, and the class of generalized analytic states [4]

46

that correspond to complex energies is identified.

To get a unique equilibrium (asymptotic) state we need
a dynamical evolution that allows the redistribution of
energy and corresponds to a nonfactorizable Liouville
operator. These dynamical maps [5] may be studied in
the context of the generalized states.

II. GROUP OF TIME EVOLUTIONS
ON STATE VECTORS AND DENSITY OPERATORS

Consider a generic quantum dynamical system S whose
states constitute a Hilbert space # with vectors . Let
the time evolution of S be governed by a Hamiltonian H,
which is a self-adjoint operator bounded from below.
Without loss of generality we may take

H=0. (1)

Consequently, the resolution of the identity associated
with H may be written in the form of Stieltje’s integrals

(6]
1=["dE, , H=["AdE,; 2

where E, are monotonically increasing nested projec-
tions. Discrete point eigenvalues of the Hamiltonian may
also be included in Stieltje’s integrals. We take the gener-
ic system to have a continuous spectrum. We may in-
clude ideal eigenvectors (without a finite norm), denoted
by |1), obeying

HIL)=A[L) , (Alp)=8(A—pn). (3)
Then we could write

dE,=dA[A) (A 4)
so that

1= fo“’dxfdalk,a)u,al ,

. (5)
H=["d\2 [dalha)(hal,
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where a is a (possibly continuous) degeneracy index that
is summed over.

The time evolution of a generic normalized state given
by [¥) is

[¥(t)) =e " Hy(0))
= —iAt
fo dhe ™ [dapra)lra), (6)

o 2
J ar[dalyrolP=1,
with
a)={Aalp) . (7)

We note that [(¢)) is the boundary value of an analytic
function by Titchmarsh’s theorem [7] and cannot vanish
for any t. The time evolutions form a group that is uni-
tarily realized

e PP =lgo]*=1. (®)

The Hamiltonian evolution is integrable into the unitary
time-development operator

U(t)y=e 1, 9)

Quantum states are rays in the Hilbert space and we
may therefore consider the density operator

p= Y {YlCp, trp=1, Cz=0: 3 Cp=1 (10)
B B

k-f—

=J dn [ dve"‘”Z@dealfdazdiﬁ

Thus the Liouville operator spectrum that is degenerate
is dependent on the mean energy A and for each A it is
bounded both above and below:

—2A<v<2A, O0<A< oo . (16)

For each A,v we may have further degeneracies labeled
by a,,a, (see Fig. 1).

III. GENERALIZED STATES AND SURVIVAL
PROBABILITY

So far we have considered the generic state |1/) to be a
superposition of the ideal energy eigenvector |A) and an
L? weight ¥(A,a). No special wave functions ¥(A,a)

FIG. 1. Spectrum of the Liouville generator for a Hamiltoni-
an system.

as the representative of the state. For a Hamiltonian sys-
tem the time evolution is by a factorizable superoperator

plt)=e“[p(0)]=e Hipe TiH! (11)
For

)= [da [ dayyralra) (12)
we have

p)=3Co[ [ [ [vshi,apf(rra)
B

— ik =Ryt

Xe dhdhdada' . (13)

Thus the spectrum of the Liouville superoperator L is
the Ritz spectrum A;—A,, which stretches from — o to
o and is infinitely degenerate. The zero eigenvalue cor-
responds to all the diagonal elements A;=A, and these
elements are invariant under time evolution. There are
therefore infinitely many fixed points of time evolution:
any A diagonal density operator is invariant for a Hamil-
tonian evolution. This circumstance is independent of
the spectrum of the Hamiltonian including it being
bounded from below.

It is convenient to rewrite the time evolution (13) in a
slightly different but equivalent form: we choose as labels

v=A—Ay, A=1(A+A,). (14)
In terms of these
ﬁ _ © 24 —ik
v |1 =L _fo dxfﬂdve ‘p(h,p) . (15)

[

were considered. If the state is constructed as the solu-
tion to some specific eigenvalue problem there could be a
definite structure for ¥(A,a). For the Friedrichs-Lee
model [8] in the lowest sector

m flw) B U :
H= 110y wdlo—a) |’ 97 |40 (17
the vector
2]
Y= 0 (18)
has the specific form [6]
= [Tan gt (19)

l+ €)

where the denominator function D is defined by the for-
mula

2

D)=z —m— [ M(e)ldo 20)
7 —

This gives a specific function ¥ and a corresponding den-

sity operator p;, whose time evolution one can study.

When D (z) has a zero near enough to the real axis (but

not on it) we have a spectral concentration in the neigh-
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borhood governed by the behavior of D (z) and thus a res-
onance.
The survival probability of the state p, is defined by

P(t)=tr[p,(t)p,]=tr(e Hipe™ip,) . (21)
Clearly
P(O)=1, 1=2P(£)=0. (22)

The survival probability for small values of ¢ may be ex-
pressed in the form

P(t)=P(0)+tP'(0)+0(t?), (23)

provided P(t) is analytic at t =0. But if P'(0) exists it is
given by

P'(0)=—itr(Hp})+i tr(p,Hp,)=0 . 24)

So the leading term in ¢ is O(¢%) and the decay rate equal
to the negative derivative of P(¢) vanishes at ¢ for small ¢
(the Zeno effect [9]). The survival probability P(¢) is the
square of the absolute value of the survival amplitude

A(z)zﬂe—f”'zpl:fowdxe"*wlmv. (25)
For the choice
__f)
hi(A) D(A+ie€) (26)
this can be rewritten
- A iAt [f(}‘)lz
A= f dh e o =i
_L eizt
C2mi chD(z) ) @7

By deforming the contour we can reexpress this in
terms of a resonance contribution and a background term
(10]

A(D)= A (1) + Apgy(D)

t

A (D=[D"(z))] e ™", D(z,)=0, (28)

_L dze‘lzt
Apga()= 27i fc D(z) ’

where C’ is a deformation of the contour C (see Fig. 2).
Since z, has a negative imaginary part, 4 (?) exponen-
tially decreases.

However, this behavior of the survival amplitude is
time symmetric: the deformed contour C’ is appropriate
for t >0 since e ~** becomes e ~'% along it. For t <0 we
need a contour C'’, which is the mirror image of C' with
a zero z, =z} of D(z) in the upper half plane. The reso-

FIG. 2. Contours for computing survival amplitude.

nance contribution would now decrease exponentially
with respect to |z|.

IV. FACTORIZABLE LIOUVILLE DYNAMICS
AND THE ANALYTIC CONTINUATION
OF VECTORS

The deformation of contours to compute the resonant
and background contributions to the survival amplitude
and survival probability shows the utility of the construc-
tion of generalized states of a quantum system. This
would be in the nature of passing from the Hilbert space
Ff into a set of inner product spaces & with correspon-
dence between dense sets in # and &, which respect
linearity and inner products. Similarly, we can make
correspondence between suitable operators defined in %
with operators defined on the &. The tool for making
such a correspondence is analytic continuation.

The notion of analytic continuation of a Hilbert space
Ff into a family of generalized spaces & has been de-
scribed systematically by Sudarshan, Chiu, and Gorini [4]
and by Parravicini, Gorini, and Sudarshan [11] (see also
M. Nakanishi [12]). It is convenient to restrict ourselves
to a system in which the energy states are not degenerate,
as for example in the Lee-Friedrichs model in the lowest
sector. (For the degenerate case, see Chiu and Sudarshan
[13].) Let |¢) be a state in F:

(o) = [ “dAglnre ™,
(lpy= [ “dry*(Ard) .

The set of vectors for which ¥(A) is the boundary value
of an analytic function in the lower half plane in the vi-
cinity of the real axis constitutes a dense subset. For
such states we can define the generalized ideal state |z)
in & with the property that

Hlz)=z|z) , (z|z’)=8(z—2') (30)

(29)

with 8(z —z’) a delta function along the contour C’, gen-
eralizing §(A—A') along the contour C.

The new spectrum is continuous from O to « along the
contour C'. If ¥(z) is the analytic continuation of ¥(A)
into the lower half plane then the physical state |{/) has
the alternate representatives

= —ikt
W)= [ _dryplr)e (31)
and
—_ —izt
)= [_dz(2)lz)e (32)
in # and &, respectively (see Fig. 3). There is nothing

c —

FIG. 3. Spectra in # and &.
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special about the lower half plane, per se: we could have
continued the spectrum into the upper half plane provid-
ed we do not encounter any obstruction to the analytic
continuation. Usually we do, since the spectrum has end
points.

Not all operators in # will take an analytic vector into
an analytic vector. However, if they do, such operators
also can be defined by their action in & such that the
correspondences are preserved. The Lee-Friedrichs
Hamiltonian would have this property if the form factors
f(w) are analytic in . Clearly a generic analytic opera-
tor would have some singularity in the complex plane.
At this point the analytic continuation should include
small contours encircling any isolated singularities and
new contours for any branch points that are encountered
in the course of analytic continuation.. Since these singu-
larities contain dynamical information, this method of
analytic continuation would highlight them.

When we deal with a resonant system with a spectral
concentration, the time dependence of the survival ampli-
tude is computed best by an analytic continuation into
the lower half plane since the time dependence of the
background integral along the negative imaginary axis (or
any line making a substantial excursion into the lower
half plane) is exponentially damped.

A more detailed evaluation of the survival amplitude
[10] shows that there are three main regimes: the Zeno
regime for small ¢, the Khalfin regime [14] for very large
time where the time dependence is by an inverse power,
and a long exponential domain where the resonant contri-
bution dominates. Between the exponential domain and
the Khalfin domain there may be further structure, like
oscillations [15].

It is instructive to verify that with an analytic Hamil-
tonian the ideal energy eigenstates are orthonormal and
complete in model theories for which we have explicit
solutions. For the Lee-Friedrichs model in the lowest
sector the complete set of states are [6]

B M
6= b (o) |’

0

=LA 3
M DiAtie) (33)
by(w)=— L2 @) F5(A—a) .

(A—w+ie)D(A+ie)
The orthonormality is easily verified; the completeness

=J dz¢.61 G4

1
T
[ a1 e8i= 1o si0—o)

(where ¢} is the left ideal eigenvector of & with the eigen-
value z in &) can be verified by direct integration. When
there is a resonance pole at z,; the contour C’ is to be aug-
mented by a loop integral around z;. It is the sum of this
discrete state together with the continuum that makes up
the completeness integral.

To speak of the poles of the S matrix (or, equally, of
the poles of the scattering amplitude) is not strictly
correct since we could have “‘redundant poles” of the S
matrix [16] that do not correspond to a discrete state

entering the completeness relation and that are not in the
spectrum of the Hamiltonian in &#. Such a situation ob-
tains if the form factor (squared) has poles [17]: they will
give rise to poles of the scattering amplitude

_fi2)
(z) —D(z) (35)

but not zeros of D(z). On the other hand, there are ex-
ceptional cases in which a complex discrete eigenvalue
may obtain with a normalized state entering the com-
pleteness relation but for which the scattering amplitude
is finite (or possibly vanishes). This will happen when at
z, for which D (z) vanishes, f*(z,) also vanishes. This is
a generalization to & of the possibility of a discrete state
buried in the continuum already known in % [18].

Even though in this simple model we get only one
discrete pole (in the lower or upper half plane), depending
on the choice between the contours C’' or C” in Fig. 2
there are more elaborate models like the Lee-Friedrichs
model in the higher sectors or the cascade model [19],
where one can have complex branch cuts or multiple
poles or both.

V. GENERALIZED DENSITY OPERATORS

We want to study the time evolution of the density
operators p(¢) and the method of analytic continuation.
The obvious method is to generalize

p=v){¢*| (36)

and use the analytic continuation for the right and left
states ¥, ¥* in . This method is adequate for limited ex-
ploration like the computation of the survival probability
or the spectral line shape. A more natural method is
based on the recognition that the time evolution of the
density operator p(A,v) depends only on the Ritz frequen-
cy v and is independent of A. Therefore we need to
analytically continue only v, keeping A real. The analytic
continuation of the Liouville operator is no longer factor-
izable [20].

We start from the integral representation for the time
evolution of the density operator

pio=["ar[" ave ™ [dapvia). (7

For density operators analytic in v we may define the
density operator in & by

pi=["dr[" dze* [dapihz,a), (38)

where the integration with respect to z is along a complex
open contour from —2A to +2A (see Fig. 4).

/_C/—/\—-———\—\_/-v)
-2\ c 2\
o

FIG. 4. Contours for analytic density operators.
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The spectrum of the Ritz frequencies is infinitely de-
generate, once each labeled by the energy A and possibly
other degeneracies indexed by a. The integration is along
a sequence of compact arcs from —2A to +2A with
0<A< . Thus, though the frequency spectrum v ex-
tends over the entire real axis, the various energy com-
ponents are restricted in their frequency spectrum.

For a Hamiltonian system, any analytic density opera-
tor has a simple temporal evolution as we saw before:

p(t)=fowdlfomdvp(k,v)e_iv’ . (39)

As t— o, the components with v0 all tend to vanish,
leading to the asymptotic limit
limp(t)= [ “dAp(A,0) . 40
limp(r)= [ “d2p(3,0) (40)

The state has the spectral line shape p(A,0). For an initial
state that is the projection to a state

m)= [ “dA(ilm)IX) @1

the line shape is simply
p(AL0)=(Alm)(m|L)=|(Alm)|?. (42)

It is the Fourier transform of this line-shape function that
gives us the survival amplitude [9,10].

The leading corrections to the asymptotic limit are ob-
tained from the kinematic singularities in the v integra-
tion coming from phase-space factors. For motion in
three dimensions the phase-space factor is

k2dk — 1V AdA (43)
so that
FO)=f (A4 (44)

with f,(A) a smooth nonvanishing function of A as A—0.
Consequently, the density operator p(A,v) has end-point
singularities in the v integration of the form

(A1) VHA— L) A= (A2 = )14 45)

Hence

[fdvp(l,v)e“i"’—p(k,O)

=C[p(A,20)+p(A, —210)]t 732, (46)
where
_ it 1/2
C fodx e''x 47)

is a numerical constant. Note that for the energy-
separated components the density operator component
decreases at ¢ 3’2 in contrast to the survival probability,
which decreases as ¢t 3. For v~A<<1 we get an in-
tegrated term proportional to ¢ 3.

For the next to the leading corrections, which could be
exponential or damped oscillatory, we need more dynam-
ical information. Therefore, it would be useful to study
some solved models and consider their analytic continua-
tions.

For the Lee-Friedrichs model the decaying state is

given by the vector [6]

— —ine__S(x)
Im)=[ dhe Do) (48)

and hence its density operator is
© 2A .
Av)= dA dve ™™
p(A,v) f o f dve

A A e 22
D(A+Lv+ie D(A—Lvtie) -

(49)

The domain of v integration is given in Fig. 1. The con-
tour of integration can be deformed by moving into the
complex plane. The analytically continued integrand has
denominator singularities (poles) at

21_=2()\,_Zl) N 22+=—2(}\,_22) ) (50)

which are symmetrically placed with respect to the imag-
inary axis. This is for continuation to the lower half
plane; if it were into the upper half plane, we would have
poles at

214 =2(A—z,), z,_=—2(A—2z;). (51)

The contours of integration and the pole positions are il-
lustrated in Figs. 5(a) and 5(b). The contour C, has not
yet encountered any singularities coming from the zeroes
of the denominator, but the resonance contribution and
the background contribution are not separated. For
times that are sufficiently small (Zeno regime) the poles of
the denominator are “far away” and the contribution is
obtained by

A fHA) sin2At _ i 2f%(A)
f 2 . _f dA 2 .
0 DXA+ie) At 0 AD*A+ie)
(2A1)?
X 1—“—3!—‘+ R ] .
(52)
-2\ F2N
(o]
C [+
z,, °Z,_
(b) C1
@ | @
c;
c AcC

FIG. 5. (a) Integration contours for A <<Rez,; (b) integration
contours for A >>Rez,.
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For the contour C the background integral is exponen-
tially damped and contributes the typical t /> depen-
dence for the energy-labeled asymptotic dependence. For
small values of A <<Rez,, the poles z,, fall outside the
contour C and may be ignored; no resonant contributions
are obtained [Fig. 5(a)]. For A >>Rez, the poles z,, are
encircled by the contour C and they give the exponential
contributions

p(A,z,_ )e‘—iz"t%-p(k,z1+ e it
—p(M2h—zy)e M4 oAz, —2R)
Xe+(2l*zl)it ) (53)

Since z, and z,, respectively, have negative and positive
imaginary parts, both terms have exponentially damped
oscillations.

VI. CASCADE MODEL GENERALIZED STATES

A richer analytic structure obtains in the cascade mod-
el [19]. This model consists of three “particles” A4, B,
and C with bare energies M, u, and 0, respectively, and
fields © and ® with quanta 0, and ¢ labeled by energies
0<w, v< w. The Hamiltonian is given by

H=H,+H,

int »

Hy=MyA ' A+pB'B+ [dwwb'(0)6(w)

+ [dvve'(vigv) (54)
= [do f(0)] 4"BO0)+B"46'(w)]
+ [dvgW[B'Co(v)+C'By'(1)] .

In the lowest sector of interest in the present context, we
consider the transition

A=B6=Cogp . (55)

If we denote the amplitudes of these true channels by 7,
¢(w) and ¥(w,v) the equations of motion can be written

(A=Mo)n, = [ flo)d(e)do'
@)3(@)=n, , + [ g
)=¢5 n(@)g(v)

For the scattering state in which there is an incoming

wave with a ¢ particle of energy m >0 and a total energy

A > n we can solve these equations to obtain
f(A—n)g(n)

al(lA+ie)y(n+tie)

¢)m((1))

(A—prp— VO (@0,v)dY . (56)

(A——v)d, ,(w,v

Man = (57)

flw)

_gn)d(A—w—pu)
y(A—w+ie) Mhn >

y(n+ie)
S(v—n)d(A—w—v)

gv)
A—ow—v+ie Sanl@) -

(58)
l!J)Ln(CO,V):

The functions a(z) and y(z) are defined by

2 ’ ’
a(z):z—MO—f!% ,

fg (v)dv'

vi—z

(59)
y(z)=z—

There may or may not be points M and u satisfying the
equations a(M)=0 and y(u)=0. For our present case
we will take them not to exist. Then both 4 and B parti-
cles are unstable. The decay of the B particle is just like
the Lee-Friedrichs model discussed earlier. There is a
complex pole when the amplitude of B is written in terms
of the scattering states Cp. Now we consider 4 to be un-
stable as well as B. [In the solution the § function term in

- 2
n=Cale " a)= [ “an [ an———L

a‘(k+1€)a(k+ze)

But
gz(n)=#[y(n+ie)—y*(n+ie)] (63)
27
so that
___L e*izl
A(t)= 7l cdza(z)' (64)

This is very much the expression that we found for the
Friedrichs-Lee model. The entire calculation involved
only the space 7.

¢3.(w) would be missing.] Then the only wave function
we need consider for the unstable particle 4 is
. fA—n)g(n)
.= 60

Tn = (it iy (n+ie) (60)
so that

=" dkf JA=nlgln) 0y e

a(?d—te)?/(n +i€)

The survival amplitude A4 (¢) is given by
2 —iAt
(ln Je 62)

"n+ieyy(n+ie)

The analytic continuation reveals new structure. The
zero of a(z) in the lower half plane will contribute the fa-
miliar damped exponential to the survival amplitude.
But when the contour is further extended we encounter a
new branch point at the complex zero of y(z) corre-
sponding to the existence of a new threshold at this point.
There is now a contour integral around this branch cut.
So the spectrum of states in & contains the three-particle
branch (which is infinitely degenerate) beginning at O and
going to «, a complex branch from the complex zero u
of y(z) going to infinity, and a discrete complex energy
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state M corresponding to the complex zero of a(z) [Fig.
6(a)]. Thus the analytic structure of the amplitude can
get contributions not only from poles but also from
branch cuts.

When the B particle becomes stable, u creeps up onto
the real axis (and below 0). In this case in # we have two
sets of branch cuts: a nondegenerate cut from u <0 to o«
and an infinitely degenerate cut from O to . The corre-
sponding energy spectra in # and & are illustrated in
Fig. 6(b). Using the kind of models studied in Ref. [13],
we can generate models that have multiple poles and
branch cuts in &.

The analytic continuation of factorizable Liouville evo-
lution leads to a well-defined asymptotic state that gives
the special line shape of an unstable particle. But if we
started from other initial states we will end up again with
energy diagonal density matrices

lim p(A,v,t)=p(A,0) . (65)

t—
There are therefore infinitely many asymptotic states,
each appropriate to a class of initial states. If p(A,v;0)
was a pure state projection operator for any finite ¢, the
same property obtains but the asymptotic state is no
longer a projection. Such a behavior is expected for the
approach to thermal equilibrium but then for a very gen-
eral class of initial states we get a definite one-parameter
family of density operators of the form

p(A,v; 0)=Z zle Ps(v), (66)

where 3 is the inverse temperature. But such a situation
involves the redistribution of energy in the spectrum. We
have no mechanism for this energy redistribution as long
as the Liouville operator is factorizable. This problem
cannot be overcome with analytically continued factoriz-
able Liouville operators. We must go beyond this kind of
Liouville operator. The generic Liouville operator would
not be factorizable and given a suitable structure we
would anticipate that it would lead to an asymptotic
thermal distribution. This is the method of dynamical

FIG. 6. (a) Spectra in & for the cascade model with 4, B un-
stable; (b) spectra in # and & of the cascade model, B stable.

JM DYNAMICS, METASTABLE STATES, AND . .. 43

maps [5] and dynamical semigroups [3]. But before I give
the general theory, I will outline an attempt to get a semi-
group and isolate the effect of resonances. Such a
method, if satisfactory otherwise, would also make an un-
stable particle (or excitation) an autonomous entity [20]
with no memory of its past; its decay would then be a
quantum Markovian process described by a precise con-
tractive semigroup.

VII. ANALYTIC DENSITY MATRICES
AND QUANTUM SEMIGROUPS

Can we arrive at a quantum semigroup for a factoriz-
able Liouville operator? In the context of nuclear a de-
cay and atomic radiative deexcitation, Gamow [21] and
Dirac [22], respectively, developed innovative approxi-
mation techniques that led to pure exponential decay.
Breit and Wigner [23] formalized these approximation
methods into a phenomenological scheme with an unsta-
ble state being assigned a complex energy E,—il /2.
The density operator in this case exponentially shrinks;

P(t)=tr[p(t)p(0)]=e " (67)

is then strictly exponential without any Zeno regime [9]
or Khalfin regime [14]. Further, for ¢ <0 this formula is
inapplicable, though the Breit-Wigner formalism has a
second pole at E+iI" /2 that leads to

P(t)=e™T", (68)

A contractive semigroup of time evolution can be ob-
tained by taking a class of unphysical states whose spec-
tral amplitude Y(A), — o <A < « is the boundary value
of an analytic function in the upper half plane and isolat-
ed singularities only in the lower half plane. Such an ana-
lytic density matrix is obtained by choosing
1 21 dv——l——

R\ z)=— o(A,v), (69)
2mi Y -2 €

v—z—I
where o(A,v) is any density matrix. The limitation for
real z

—2A<v<2A, (70)

stemming from the non-negativity of the Hamiltonian, is
now relaxed. The Khalfin theorem [14] on survival am-
plitude no longer obtains. In fact, outside the region the
ie may be omitted and we have

1

Vvi—y

-1 , '
R(dv)=5— [dv o(Mv) . (71)

For this “density matrix” R the time dependence is

R(1)

Il

Jdr[dve ™R(x,v)
(72)
0, t<0
Rp(t)+ S R, (1), t>0,

where the summation is over the discrete poles of R (A,z),
and R, (2) as defined below:



e—z(x—z:‘m

R, ()= [dA[R(2,2(A—z2}))

2z, =Mt

+R(A,2(z,—2X))e

n- é_rn ’

characteristic of a decaying state. The expression is fur-
ther complicated by the presence of a background contri-
bution Ry(z), which is very small, varies as t73, and is
relevant only for ¢t >>(1/I',). In this form all informa-
tion about the trace of R in # is lost. There are no diag-
onal elements in R, (¢) so computed. On the other hand,
by virtue of the half-plane analyticity of R(A,z),

R= [dr[dve ™™ R v=0, t<0. (79

z,=E

Therefore we should consider the state R(A,v) as being
“created” at time 0. Note that trR (¢) is discontinuous at
t =0 and trR (t) decreases with increasing (positive) .

One could ask whether I could deal with analytic vec-
tors (in place of analytic density operators) and project
out the half-plane analytic vectors [24]

1 @ 1
A—z*tie
which, by construction, provide functions analytic in half

planes. The unitary time evolution on ¥(A) induces two
isometric semigroups of evolution on WV, (z)

S
A—z+ie
=T, ()¥,.(2), (76)

V. (2)= WA, (75)

2mi Yo

. :_1_ —IiAt
V., (z;1) 2m,fd}w

where the time evolutions T, (¢) constitute a contractive
semigroup of isometries

T ()T ()W, (2) =T, (t,+1,)¥,(2) ,
T, (t)=0, t<0, an
T.(0+)=1.

t,t,>0,

By the converse of Titchmarsh’s theorem [7], the Fourier
transform of W (z) has support on the positive real line:

V(1= [" W, (e Mdr=0, 7<0. (78)

On V¥ (7) the time evolution semigroup is represented by
the contractive semigroup
T,V (r)=WPp(t+7), t>0. (79)

(t) is not generally defined for ¢ <0, though each
(7) has an “‘age” 7, such that

T,V (r)=0, t<—7,. (80)

T,
v,

For t <0 we can define the subset of states W_(7)
whose Fourier transforms have support over the negative
real axis of 7

V_(n=[" w_(0e ™Mdr=0, >0, (81)

on which the negative time semigroups are
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FIG. 7. Contours to compute 4 ,(¢); ¢ >0.

T ()W (r)=V¥ _(r+t), t<0. (82)

From the defining formulas for W, (1) we have the
identity

V., (AM)+VY _(A)=y(A), (83)

so that W, (A) are the projections of ¥(A) into the two
classes of functions. While ¥(A) obeys the spectral condi-
tion

P(A)=0, A<O0, (84)

this is true of neither ¢, (A) nor ¥_(A). The states W (A)
are therefore not in #f but in a larger space. The analytic
continued W,(x) are therefore not in one-to-one
correspondence with the dense subset of analytic vectors in
.

The survival amplitude of these analytic vectors can be
computed by taking their scalar product with their dual
at t =0. We obtain in this fashion the survival amplitude

e —izt
D) (85)

For t >0 (see Fig. 7), we can complete the contour to the
lower half plane and do the integration along C, to get

B _ 1
A+(t)—<w1(0)|\l'+<t>>—%fc,,dz

A (= A (DF Apga(D) . (86)

For the case of ¢t <0, A4, (¢) is not always defined in-
dependent of the age 7, of the state ¥,: if t<—r7,
W, (1)=0, but if 0>t > —7 then V¥ (¢) is defined and the
survival amplitude is the continuation of (76). The abso-
lute magnitude of this amplitude is larger than unity
since the produced particle at t = —7; had been steadily
decaying from then until  =0.

VIII. EXPONENTIALLY DECAYING STATES

It is possible to get a pure exponential law for any
model? Naturally we have to seek vectors in . This can
be done if I start with a Hamiltonian that is not positive
definite in # and for which the threshold form factors
are mutilated. Consider a generalized Lee-Friedrich
model for which the denominator function is

r 1 r dE

D(A,)=A—E+ti—=—— :
(A2) "2 2mi (E—E,?+ir? E—Xie

(87)

Such a model can be constructed. The survival ampli-
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FIG. 8. The upper half-plane function realizing ¥, and its
survival amplitude.

tude for this model is
A, ()=(Yl)lvr)) =e

For a i, with zero age, 4 . (¢) vanishes for negative ¢
since we can close the contour in the upper half plane
(Fig. 8). When the age 7 is nonzero, the lower contour
C’ converges for t > — 7, and the upper contour C"’ con-
verges for t < —7, So

A, (1)=0,

—iEqt—1/2't 0. (88)

t<—1,. (89)

This is valid for all ages.
Since the integrand defining ¥, does not have a gap
— o < E < o it follows that the open contour integral
1 o r dE
— dE
27w Y — (E—E)2+%F2 E—:

(90)

defines a piecewise analytic function in the complex
plane, analytic in the upper and lower half planes. In the
upper half plane it is z—E,+(iT"/2) while in the lower
half plane it is z—E,—(iT" /2) (Fig. 9). So for large nega-
tive times (¢ < —7,), while we cannot compute A4 , (t) we
can define 4 _ () to be

A_(t)ze—iEtv(l/Z)l“(l) , 1< —T1,. 91)

IX. COMPLETELY POSITIVE DYNAMICAL MAPS

Now we return to dynamical maps [5]. A (linear)
dynamical map assigns to every density p another density
operator:

p—>Alp),
cos’0p, +sin’fp,—cos?0A (p,)+sin’0A(p,) ,  (92)

cz E0+ig \C
— |

) )
c't c'i

FIG. 9. The lower half-plane function realizing ¥_ and its
survival amplitude.

pZ0—-A(p)20,
trp=1—>trA(p)=1,

t ¥ (93)
p=p —Ap)=[Alp)] .
A generic method of generating such a map is
A(p)="3 B(a)pB'(a)
=3 B'(a)B(a)=1. (94)

Such maps are called “‘completely positive” [25]. Not all
maps are completely positive. The simplest counterex-
ample is

p—pT. (95)

Another generic method is the following. Consider the
tensor product of # and another Hilbert space #'. Let
us call this tensor product space /. From the density
operator p in # and a fixed density operator ¢ in #' we
construct their tensor product pXo in #. Let V be any
isometry in # (if # is finite dimensional, ¥ could be uni-
tary)

viv=1. (96)
Clearly (Tr is trace in %),
Tr[ V(pX o)WV =Tr(pXa V'V)
=Tr(p X0 )=trg(pltrg.(o)=tryglp) .
97
So if we define
Alp)=trgy(VpXa V'), (98)

then all the conditions for a dynamical map are met
[5,25].

These two generic methods of realizing dynamical
maps are equivalent. If the fixed density matrix is diago-
nalized and the nonzero eigenvalues A, are enumerated

by a=1,2,... and II, are the corresponding projectors
in 7', then define
trg (VII,)=B, , (99)

which are operators in #. Then, since

V=S I Xtr,(VI,) ,

A(p)=try(VpXaVT)

= %trﬂ[( VIL,)p X (pi,allg)(V'TIB)] (100)
a,
Alp)=3 B.pB} . (101)
a
Conversely, given the map
p—Alp)=S BpB. , BlB =1, (102)

we can construct [26]
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V=S TM,xB, (103)
Then

viy=1 (104)
and

Alp)=try(V,Xa V") (105)
with the diagonal matrix

(0)op= tre;{(B:iBa)BaB , NO sum over « . (106)

So both methods give the same set of completely positive
dynamical maps.

When the dimension of # is finite, # can be chosen to
be finite dimensional and consequently V is unitary. But
for # infinite dimensional, # is also infinite dimensional,
there are isometric operators that are not unitary. The
elementary isometric operator with deficiency index 1 in

the space # (indexed by a denumerable index
k=1,2,...)is [27]
Vie=8r 41 - (107)

It is useful to note that if H is the Hamiltonian in %,
the operators B, may not all commute with #. There-
fore, there is a possibility of energy redistribution in the
dynamical map, and the generic map is a contraction
map with possibly one fixed point. This is in direct con-
trast with factorizable Liouville operators, which have a
one-parameter family of fixed states. All such dynamical
maps are contractions of an isometry of a larger system
[26]. The dimension of %' need not be any larger than
the dimension of # squared. For the generating element
of the convex set of maps one can show that the dimen-
sion of #' is less than or equal to the dimension of #
[25].

The quantum dynamical maps are finite time develop-
ments [5]. But the existence of the temporal group in #
and the semigroup in & suggests that we look at their
generators. In 7 this generator is nothing but the Ham-
iltonian in the factorizable case. In &, however, we have
semigroups. If we take the Kronecker product # of #
and #' we write the isometric operator V(t) in the form

22
V(z)zexp(—itJ)=1—irJ+%Jz+ e (108)

As long as we keep only the linear terms in ¢ for small ¢
we have an effective Hamiltonian group of evolution of p
in #£ given by

p—plt)y=e HipeHt (109)
where
H try(J) . (110)

To get any result going beyond this, we need to retain the
quadratic term

=p—it[(tryd ),p)
2

2!

p~—+p(t)

—[(trypJ?)p+pltryJ?)—2HpH |+

(111)

The third term can be written in the form
2

[T wpl—

2
- 21 {[Ja>pJL]+[Jap’JZ]} :

2HpH) =’7

(112)

The term +t’HpH is the term quadratic in ¢ of
e “Hipet Here J,, and J|, are the (1,) and (a, 1) blocks
of J and H is the (1, 1) element partitioned with respect to
a basis in #'. Kossakowski had shown that for a finite-
dimensional system the most general dynamical semi-
group generator has the form [3,28,29]

1+ 3 (I wp) - (113)

p=ilp,H
The generalization of this to an infinite-dimensional sys-
tem has been made by Lindblad [30].
We can go in the opposite direction and demonstrate
that all dynamical semigroups have generators that can
be obtained from semigroup generators for an extended

system. Construct
An=H, Ao=Jo, Ay=JL, Ayu=(Ag)"  (114)

arbitrary. Then A so constructed is Hermitian sym-
metric. To order ¢* the change in p is
. (it) )2
zt[p,H]+T(JaJ p+ JaJa (it)y>HpH . (115)

For t=1 sufficiently small we absorb V7 into the
definition of J, and write the approximate evolution

equation

p=ilp, H1+{J s .p} (116)
which is equivalent to

p=ilp,tryd |+ {try (JT),p} . (117)

For the generic case, this evolution does not leave the en-
ergy distribution unchanged since 3 ,J aJ o may not com-
mute with H and a unique equilibrium state may result.

I seek the generator of the semigroups of time evolu-
tion in J obtained by the open contour construction of
generalized state vectors
= 4y p(A, v )e™

- (118)
277' — v—v'+ie

R(A,v,t)=

and its analytic continuation into operators in &. For
t >0 we can close the contour in the lower half plane. By
distortion of the contour we may express it in terms of an
integral over complex frequencies with one or more dom-
inating poles.

Analytic density operators can be expressed in terms of
contour integrals in the complex plane; the time evolu-
tion of the density operator is then expressible as a direct
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integral of damped exponentials. Since two distinct con-
tours may have only their end points in common, the two
direct integrals may not have much in common, yet real-
ize the time dependence of one state [31]. For contours
in the lower half plane one may or may not have discrete
“pole” contributions. For the generalized half-plane ana-
lytic density operators, the end points recede to infinity
and for one sign of time the direct integral of damped
harmonic dependences vanish.

X. CONCLUDING DISCUSSION

The generalized (“macroscopic”) states and the physi-
cal (“microscopic”) states of a physical system are both
representatives of the same system as long as we deal
with the dense subset of analytic density operators. A
physical system that is isolated ought to have a Hamil-
tonian that is bounded from below and the energy should
be invariant under time evolution. But when the system
is in interaction with other systems or with unobserved
degrees of freedom inherent in the same system, the (re-
duced) Hamiltonian may not be positive definite, or even
specific. It is in this context that we consider dynamical
maps and dynamical semigroups.

Time manifests itself in two distinct aspects: reversible
time for Hamiltonian systems and historical time for non-
factorizable Liouvillian systems [32]. The emergence of
historical time does not involve the breaking of time-
reversal symmetry considered by Wigner [33]. Rather,
most irreversible systems are time-reversal symmetric
(that is, invariant when momenta and angular momenta
are reversed and an antilinear transformation is imple-
mented).

The introduction of generalized states by the analytic
continuation of a dense set of analytic vectors in the
physical space serves to display the approximate ex-
ponential decay as due to the dominance of a complex
discrete generalized state; but as long as one starts with a
physical state and continues it into the generalized
spaces, the discrete complex energy state should always
be accompanied by a background integral that necessi-
tates the Khalfin and Zeno regimes. Exact semigroups
are obtained only when one starts with unphysical states
with an energy spectrum unbounded from below.

Such a behavior may be appropriate for dealing with
partial subsystems of a larger (unobserved) system. The
effective dynamics is, in such cases, realized by a linear
trace, hermiticity, and positivity properties of the subsys-
tem density matrix and is, as a rule, nonfactorizable.
This structure is necessary to bring about the redistribu-
tion of energies of the subsystem: the dynamics cannot
be Hamiltonian. This generic dynamical law gives the

notion of dynamical maps. It is shown that the contrac-
tion of the system dynamics into the subsystem dynamics
leads to nonfactorizable dynamical maps. The generic
form of dynamical maps is presented and it is shown that
one can always realize it as the contraction of a unitary
map.

Similar considerations are standard for dynamical
semigroups and the generic Kosakowski form of the
dynamical semigroup generators is rederived. The con-
verse is also shown, that the Kossakowski form is realiz-
able as the (limit of a) contraction of a Hamiltonian evo-
lution of a larger system.

Arriving at a semigroup and introducing historical
time by themselves do not lead a complete understanding
of statistical thermodynamics. There has to be an ap-
proach to a specific equilibrium; this requires a change in
the energy distribution. For a decaying particle we have
a line shape computed dynamically, but approach to
thermal equilibrium involves a new kind of dynamics.

With regard to the question of whether there are auto-
nomous pure exponentially decaying particles: Are we
forever stuck with approximate exponential decay law
with “aging” of the unstable particles, the Zeno regime in
infancy, and the Khalfin regime in old age? The answer
lies in the choice of the states [34]. If we use physical
states that are composed of non-negative energy states we
have aging particles, but we can choose (if we choose)
generalized states that have pure exponential decay.
Which is the better choice: exponential decay and gen-
eralized states, or aging particles and conventional states?
Yamaguchi [34] and Tasaki, Petrosky, and Prigogine [35]
have recently called attention to the implications of the
notion of generalized (complex pole) states for the kaon
decay complex and to the possibility of experimental tests
to delimit the choice.

One could use the quantum envelope of a classical sys-
tem [36] to deal with the time evolution and generalized
states of a classical system. This would be treated in a
separate paper.
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FIG. 1. Spectrum of the Liouville generator for a Hamiltoni-
an system.



FIG. 6. (a) Spectra in & for the cascade model with A, B un-
stable; (b) spectra in 7 and & of the cascade model, B stable.



