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ABSTRACT

Phenomenological treatments of unstable states in quantum theory have
been known for six decades and have been extended to more complex phe-
nomena. But the twin requirement of causality ruling out a physical state
with complex energy and the apparent decay of unstable states necessitates
generalizing quantum mechanics beyond the standard Dirac formulation.
Analytically continued dense sets of states and their duals provide the
natural framework for a consistent and conceptually satisfying formulation
and solution. Several solvable examples are used to illustrate the general
formalism, and the differences from traditional phenomenological treatment
(and its modern revivals) are noted. The unreliability of the singularities of
the S-matrix as a criterion for determining the spectrum of states in the
generalized theory is also brought out. The time evolution of unstable
systems is characterized by three domains. Results in the decay of the
neutral Kaon and its counterpart in higher-flavor-generations provide
physically relevant and interesting unstable systems.
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I. INTRODUCTION

The study of the decay of a metastable quantum system began with
Gamow’s theory [1] of alpha decay of atomic nuclei and Dirac’s theory [2]
of spontaneous emission of radiation by excited atoms. A general treatment
of decaying systems was given by Weisskopf and Wigner [3], and by Breit
and Wigner [4] (see for examples Bohm [5-8], Fonda, Ghirardi, and col-
laborators [9,10] and Yamaguchi and collaborators [11], all these gave a
strictly exponential decay. Fermi [12] gave a simple derivation of the rate
of transition following the work of Dirac; and this has come to be known
as the Golden Rule. The close relationship between resonances and meta-
stable decaying states had been noted in nuclear reactions by Bohr [13],
Kapur and Peierls [14], and Peierls [15]; sec also Matthews and Salam
[16,17].

Siegert [18] was the first to associate the complex poles in the S-matrix
of Wheeler [19] to quantum theory resonances. Peierls [20] seems to have
been the first to seriously investigate the problem that the Breit-Wigner
resonance model has complex energy states on the “physical sheet” in vio-
lation of the notion of causality in quantum mechanics [21]; he emphasized
the need to relegate any such complex poles to an unphysical sheet in the
analytic continuation of the scattering amplitude in the complex energy
plane.

The exact solution of a model of decay going beyond the Breit-Wigner
approximation of the Dirac model for metastable atoms was studied by
Glaser and Killen [22], Hohler [23], and Nakanishi [24] following the
field theoretical formulations of Lee [25] and an early work of Friedrichs
[26]. Other models of a metastable system were studied by Moshinsky
[27], Winter [28], Frey and Thiele [29], Levy [30], Williams [31], and
Fleming [32].

Khalfin [33,34] had shown that, on general principles, if the Hamil-
tonian was bounded from below, the decay could not be strictly exponen-
tial. He used the Paley—Wiener theorem [35] to demonstrate the result. He
also showed that there should be deviations from the exponential in the
very large and very small time domains. Misra and Sudarshan [36] showed
that for a wide class of systems, tests of nondecay repeated at arbitrarily
small times prevent the decay of a metastable state—the so-called Zeno
effect.

The question of irreversibility and the treatment of unstable states has
been systematically pursued by Prigogine and his collaborators. Our inter-
est in the conceptual questions has been stimulated by Prigogine’s work
and his important observation that an unstable particle, if it is autonomous,
must obey the same decay law at all times. They must then be distinct from
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Khalfin’s [33] unstable states, which must age. Because the work of Prigo-
gine and collaborators is presented elsewhere in this volume, we content
ourselves with reference to their latest papers [37-397]. See also the point of
view elaborated by Prigogine in From Being to Becoming [40].

In this article, we are concerned with a systematic and conceptually con-
sistent development of the theory of metastable systems going beyond the
Breit-Wigner model and its modern revivals. We shall follow several of our
papers [36,41-46] over the past two decades.

A. Spectral Information of a Resonance

Quantum mechanics is defined in terms of vectors in Hilbert space with
self-adjoint linear operators realizing dynamical variables. Self-adjoint oper-
ators have a real spectrum. For stationary states, we have point eigenvalues
of the spectrum; scattering states are usually associated with the continu-
ous part of the spectrum. What then about resonances and metastable
resonances ?

In standard quantum theory these also belong to the continuous spec-
trum bounded from below. The only signature of a resonance or a metasta-
ble state is a “spectral concentration” or a line shape. Because the line
shape is affected by the background and by kinematical factors, we can
usually extract only the center of the resonance peak and its width (full
width at half maximum). It would be desirable to see these items emerge as
spectral information: this is what the Breit-Wigner approximation does,
but at a very high price—the violation of spectral boundedness. But the
phenomena in which this situation obtains are many: deexcitation of
atomic levels, alpha decay, formation of compound nuclei, and resonant
scattering. Therefore, we need a more general formulation of quantum
mechanics which has a richer spectral structure but does not violate physi-
cal principles.

B. Lorentz Line Shape and Breit—Wigner Approximation

The amplitude for a metastable state to overlap itself after evolution for a
fixed time 1 is called the survival amplitude:

AlR) = <y le ™y (1.1)
Since, in general, its absolute value is less than 1, it is tempting to write

e“’*‘rtﬁ} _)e—{i£n+mzm:[w> (1.2)
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so that there is a complex eigenvalue. If we recognize that for negative time
| A(t)| is also less than 1, we may consider

e—iEor—{lmrlrlw,) (1_3)

as the evolute of the metastable state. Taking the Fourier transform of the
exponential factor, there are contributions from both the negative and the
positive time. We obtain, for —c0 < @ < o0,

I .. INNTNNNYE S S
J@) = @—Ey—2)  In @ —Eo) + @22

I (12
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@ —E) + ) (14)

The last expression has the Lorentz line shape known from the response of
a harmonically bound electron with a dissipative term. Note that the spec-
trum is unbounded from below. The spectral weight is an analytic function
of @ with isolated poles at @ = E, + iy/2. Because f(w) is nonzero along the
entire real axis, there are two pieces of the piecewise analytic Fourier trans-
form. One piece varies as ¢~ *"? for positive ¢ and zero for negative ¢; the
_other piece has e"? for negative ¢ and zero for positive t. Neither piece
models an autonomous physical state because the state appears to be
created or destroyed at t = 0 and has a purely exponential law. There are
no states in the physical Hilbert space, that is, among states in the linear
span of positive energy states which have such a property. (A “state” with
such a time dependence can be synthesized only if one includes unphysical
negative energy states along with the physical states.) If we require of these
unphysical “states” the physical requirement of causality, that is, they
vanish for negative times, we get the unique (though unphysical) choice

1 i
=0 @ E)+ ) =
[Y(6)) = B(r)e™ "Bt~ 27 | y(0)) (1.6)

However, this state is not time-reversal invariant, and cannot be made time-
reversal invariant without giving up the causality requirement. If we give up
causality, we get back Eqgs. (1.3) and (1.4).

The decomposition in Eq. (1.4) into two terms is the split of an
unphysical state with a spectrum — oo < @ < o¢ into two unphysical states
which are analytic in the lower and upper half planes and are therefore,
respectively, causal and anticausal. This is a special case of a general
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decomposition which can be carried out for physical states and for
unphysical states into the sum of functions analytic in half planes. This is
discussed in detail, see Section IV.F.

Let us return to the Lorentz line shape (1.4). A classical physical context
in which such a line shape arises is in the correlation function of a harmon-
ically driven damped harmonic oscillator. Here the time-dependent ampli-
tude x(¢) and the two-point correlation function are respectively described
by

=it

d*x dx ae

Sy 2y = =t .
drz + R 7 + whHX ae § x(l) (ﬂg = wz — ioR (1.7)
1 LS a* ae_im'
_ s B0 : d
{X(0)x(2)> o j_w 02 — w? +ioR w2 — o® — ioR @
2
& la] e~ WDRI co5 gy 1 (1.8)

4Rw}

In the last step, the approximation R <€ w, is assumed. Here the temporal
behavior for the two-point correlation function, which is analogous to the
survival amplitude, is exponentially damped for both positive and negative
time. The frequency dependence has been used in models of dispersion rela-
tions for the refractive index of a dielectric in the Sellmeier formula [47]
and in more detailed theories of the refractive index [48].

C. Lorentz Transformation on State with Complex Eigenvalues

Although Lorentz transformation is not the main concern of this chapter, it
is instructive to digress here to see how a resonance state with a complex
eigenvalue would transform under Lorentz transformation. For defi-
niteness, consider the real spectrum of Eq. (1.5) with the corresponding time
dependence given in Eq. (1.6). The real spectrum here consists of all ener-
gies, so when we make a fixed Lorentz transformation, we get all possible
momenta—some positive and some negative—with a concentration around
the value expected for energy m. This range of momenta may be expressed
by a complex momentum suitably defined. We could work with real
momenta but any fixed Lorentz transformation with the boost parameter 5
would produce not a unique momentum m sin hy but all momenta from
— o0 to + 0.

To perform this analysis for the correct real spectrum 0 < @ < o0 is not
difficult; there is no state with complex energy m — i(I'/2) by itself, it must
be accompanied by a complex background. Such a state will transform
itself into complex momenta, but that is mostly the alternative expansion
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for a superposition of all momenta (in the same direction!). So there is no

inconsistency.
In the narrow width approximation I" < m, we can get a simple deriva-

tion of the behavior of the lifetime:

i . 2
(mv—ér,O):q(E—%f',p) —p? (1.9)

i Lz =
(m—il", O)—r(EwEI“,p) (1.10)

Equating the imaginary part on the two sides of the equation leads to

with

ET’' =mI (1.11)
So
" m v?
LI 1.12
I E . c? (112
Thus while
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Rel i b fs B, Imm—L)—»—=T’ (1.13)
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Thus the width is reduced and the lifetime is increased !

D. Violation of the Second Law of Thermodynamics

The Breit-Wigner model (and its modern revivals) violate the spectral con-
dition to obtain a strict exponential decay; or, more generally, the linear
sum of a finite number of exponentials. This violation would, were it
actually to occur, also violate the second law of thermodynamics [49].
Because states with arbitrarily large negative energy are admitted here, we
can devise suitable interactions that take away arbitrarily large amounts of
energy from the system. The first law of thermodynamics can be satisfied
and yet the available energy from the system is arbitrarily large. Since this
must not be possible, the unbounded spectrum by itself should not occur.

In the formalism presented in this article, there is a complex energy dis-
crete state always accompanied by a complex background such that the real
energy spectrum is always bounded from below. The restriction we have to
impose to obtain this resolution is to have only such states as are derived
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from analytic continuations of physical states; then an isolated, discrete,
complex-energy state must always be accompanied by a complex back-
ground with a real threshold.

E. Organization of This Chapter

Our discussion below is divided into two main topics: one concerns the
characteristic region in the temporal evolution of unstable quantum
systems and the other concerns the formulation of a consistent theory for
an unstable quantum state.

1. Temporal Evolution of an Unstable Quantum System

When the energy spectrum of the unstable particle system is semibounded,
one expects a deviation from pure exponential decay. This deviation occurs
[33,34] in both the small and the large t-regions. In Section II, the three
characteristic time regions [36,41], in the time evolution of a one-level
unstable quantum system are discussed. In the small i-region, the time evo-
lution of the system is sensitive to repeated measurements. When the expec-
tation value of the energy of the system is finite, one expects the Zeno
paradox, that is, frequent measurement of the unstable system leads to non-
decay. However, when the expectation value of the energy is infinite, repeat-
ed measurement of the system would lead to a rapid decay of the system. In
the large ¢-region, the survival probability has a power-law fall off, with the
rate of the fall off governed by the threshold behavior of the semibounded
spectra. There may be intricate interference phenomena [28] at the tran-
sition from the exponential decay to the power-law region.

The solution [50] to the multilevel unstable quantum system is present-
ed in Section ITL. The most common example is the neutral Kaon system,
which is a two-level system. Here the Lee-Oehme-Yang [51] model is the
Breit-Wigner approximation for the two-level unstable quantum system.
Within this approximation the unstable Kaons K, and K can be written as
superpositions of K° and K°, where K, and K decay independently. When
one takes into account that they are poles on the second sheet, there are cut
contributions for the survival amplitudes in addition to the pole contribu-
tions. The cut contributions are particularly important in the very small
and very large t-regions. Regeneration effects [52,53], that is, the transitions
between K; and K, are expected to be nonnegligible in these regions [50].
These and related issues for the neutral Kaon system are also discussed in
Section II1.

Thus far our attention has mainly been on the features of the time devel-
opment of unstable quantum systems, which show the departure from pure
exponential decay of the Breit-Wigner approximation. This deviation arises
when one takes the continuum spectrum into account. Here resonance is a
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discrete pole contribution in the survival amplitude or, more generally, the
transition amplitude on the unphysical sheet. This is in contrast to the
Breit-Wigner approximation, where the resonance pole(s) are on the physi-
cal sheet. The “physical sheet” and the “unphysical sheet” designations used
here have important distinctions. From the requirement of causality, it can
be shown that transition amplitudes are analytic on the physical sheet. The
presence of complex poles on the physical sheet, therefore, implies the vio-
lation of causality. Since we want to work with a causal theory, resonance
poles must be identified with the second-sheet poles and deviation from
exponential behavior in the time evolution is expected.

From the study of solvable models, it is likely that departure from the
exponential decay law at presently accessible experimental time scales is
numerically insignificant. Nevertheless, it is important to insist on having a
consistent framework for the description of unstable states, which gives pre-
dictions coinciding with the Breit-Wigner approximation in the bulk of the
middle region and at the same time allows extension to the very small and
very large time regions. We proceed now to the generalized quantum
system where the resonance pole will be identified as a generalized quantum
state.

2. A Theory for Unstable Quantum Systems

As we explain in detail later, a consistent framework for the unstable state
is achieved through the use of a generalized vector space of quantum states.
Consider the integral representation defined by the scalar product between
an arbitrary vector in the dense subset of analytic vectors in the physical-
state space # and its dual vector: the integration is along the real axis.
Keeping the scalar product fixed, the analytic vectors may be continued
through the deformation of the integration contour. The deformed contour
defines the generalized spectrum of the operator in the continued theory,
which typically consists of a deformed contour in the fourth quadrant and
the exposed singularities, if any, between the real axis and the deformed
contour. We identify an unstable particle pole as a bona fide discrete state
in the generalized space with a complex eigenvalue. Here the continuum
states are defined along some complex contour y, which is deformed in such
a manner as to expose the unstable particle pole. The inner product and
transition amplitudes are defined between states in % and its dual state in
the corresponding dual space 4.

In Section IV, we discuss this analytic continuation approach. Several
models are studied, and special attention is given to the unfolding of the
generalized spectrum. We demonstrate how the analytic continuation is
done for the Friedrichs—Lee model in the lowest sector and for the Yama-
guchi [54] potential model. We show that the generalized spectrum
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obtained leads to the correct extended unitarity relation for the scattering
amplitude. In this Section we demonstrate the possibility of having mis-
matches between poles in the S-matrix and the discrete states in the Hamil-
tonian, which may arise when 5 obtains also in the generalized % space.
Finally, we consider the analytic continuation of the probability function
and the operation of time-reversal invariance.

In Section V, we study the analytic continuation as applied to the multi-
level system [55] and its application to the Bell-Steinberger relation [56]
for the neutral Kaon system.

In Section VI, we extend our consideration to the three-body system. In
particular, we consider a solvable model involving a three-body system,
that is, the cascade model [44], which contains 4, B, and C together with
two species of quanta. The interactions are given by 4 — B8, B —» C¢. Here
the second-sheet singularities are the resonance pole A* and the branch cut
B*@. The analytic continuation [43] of this model is also discussed. The
extended unitarity relation here can conveniently be displayed in terms of
the generalized discontinuity relations. Section VII gives a summary and
our conclusions.

II. TIME EVOLUTION OF AN UNSTABLE
QUANTUM SYSTEM

. In this section we study the time evolution of the so-called unstable particle
system. By definition, an unstable particle is a nonstationary state which
undergoes substantial changes in a time scale much larger than the natural
.time scales associated with the energy of the system. In this case, the
‘“natural” evolution in time and the “decay transition” may be viewed as
two separate kinds of time development. It would be profitable to think of
the natural evolution as if it were accounted for by an unperturbed Hamil-
tonian and the decay transition as being brought about by an additional
perturbation. Conversely, given a Hamiltonian with a point spectrum and a
continuous spectrum, we may introduce perturbations which lead to
“decay” of the states which belonged to the point spectrum and which were,
therefore, stationary. In this way we can determine the precise time devel-
opment of the system.

Many studies have been devoted to guestions relating to deviations from
the exponential decay law of particle decay processes. The time-reversal
invariance requires that the slope of the survival probability at t =0 be
continuous, which admits two possibilities—it may be either 0 or co.

When the expectation value of the energy of the system is finite, this
slope is zero, which leads to Zeno's paradox. The theorem on Zeno's
paradox of Misra and Sudarshan [36], proves that nondecay results gener-
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ally. Earlier work by Degasperes et al. [57] and Rau [58] showed that the
limit of infinitely frequent interactions leads to nondecay. These are special
cases of Zeno’s paradox theorem. Some subsequent investigations of Zeno
effect were performed by Chiu, Sudarshan, and Misra [41], Ghirardi et al.
[10], Peres [59], Fleming [60], and Valanju [61,62]. The quantum Zeno
effect has been verified by Itano et al. [63] using metastable atoms “inter-
rogated” by microwaves.

On the other hand, for a quantum system where the energy expectation
value is co, the slope of the survival probability at t = 0 is co. For this case,
the repeated measurement of the system leads to a rapid decay of the
system [41].

In the large t region, the survival probability has a power-law fall off in ¢,
with the rate of the fall off governed by the threshold behavior of the semi-
bounded spectra. Winter [28] studied a simple barrier-penetration problem
to elucidate the time development of quasi-stationary states in the small-,
intermediate-, and large-time regions. Some interference phenomena were
observed. Our discussions below are based mainly on the paper by Chiu,

Sudarshan, and Misra [41].

A. Deviation from Exponential-Decay Law at Small Time

We start with a brief recapitulation of the quantum-theoretical formalism
for describing unstable states. Let 3 denote the Hilbert space formed by
the unstable (undecayed) states of the system as well as the states of the
decay products. The time evolution of this total system is then described by
the unitary group U, = e~ ¥, where H denotes the self-adjoint Hamiltonian
operator of the system. For simplicity, we assume that there is exactly one
unstable state represented by the vector | M) in 5, which must be orthog-
onal to all bound stationary states of the Hamiltonian H. Hence | M) is
associated with the continuous spectrum. (In contrast to this simplified situ-
ation in quantum mechanics, the spectrum of the Liouville operator of a
classical dynamical system, which is weakly mixing or nonmixing, must
have a singular continuous part.) Thus, if F,; denotes the spectral projec-
tions of the Hamiltonian,

H=j2dFAEJA|i><i[dA 2.1
The function (M | F, | M is absolutely continuous, and its derivative

o) = - (M| F, | M = (M I AYCAI M) (22)
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can be interpreted as the energy-distribution function of the state | M ; that
is, the quantity

E+dE
f p(h) di 2:3)
E
is the probability that the energy of the state [M) lies in the interval
[E, E + dE].
The distribution function p(4) has the following general properties:
1. p(A) =0
2. j' p(A)dA =1, corresponding to the normalization condition
{M|M>=1

3. p(4) = 0 for A outside the spectrum of H

It may be noted that, in defining the energy-distribution function p(i) as we
have done above, we have absorbed the customary density of states factor
or the phase space factor o(J4) in p(4).

The conditions mentioned above are quite general and hold for any state
orthogonal to the bound states of H. To identify it as an unstable particle
state with a characteristic lifetime, its energy distribution function should
satisfy certain additional conditions, which are discussed in Section II.C. In
this section, we use only properties 1-3 of the energy-distribution function.

The nondecay probability Q(f) (or the probability for survival) at the
instant ¢ for the unstable state | M) is given by

Q) = {M|e™ ™| M|? (24)

Accordingly, the decay probability P(t) at ¢t is 1 — Q(t). The nondecay
amplitude a(t) = (M| e~ | M) is easily seen to be the Fourier transform of

the energy-distribution function p(4):
a(t) = {M|e | M) = fe“*‘d(M[FﬂM) (2.5
= fe‘”‘p(l} da (2.6)

The celebrated Paley—Wiener theorem [35] then shows that if the spectrum
of H is bounded below, so that p(4) =0 for 4 < 0, then |a(t)| and hence
Q(t) = |a(t)|* decreases to 0 as t — oo less rapidly than any exponential
function e ™. This is essentially Khalfin’s argument proving the necessity of
deviation from the exponential decay law at large time.
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The following proposition shows that Q(t) must deviate from the expo-
nential decay at sufficiently small time as well. Let the spectrum of H be
bounded below; assume further that the energy expectation value for the
state | M) is finite:

jip(i} dl < (2.7

Then Q(t) > ¢~ for sufficiently small t. We shall assume, without loss
of generality, that the spectrum of H is confined to the positive semiaxis
[0, o0].

To prove the proposition, it is sufficient to show that Q(t) is differentiable
and

. d
Q0) = 90 o s - (2.8)

We shall in fact show that
00)=0 2.9)

In view of the positivity of the operator H, the energy distribution function
p(A) = 0 for 1 < 0. Thus, Eq. (2.7), together with the semiboundedness of the
spectrum, implies that the function 1p(4) is absolutely integrable:

IM};J[A) di < (2.10)
The survival amplitude is defined by
a(t) = fe‘“'p(?t) di with a(0) =1 (2.11)
The condition of Eq. (2.10) implies that a(r) is differentiable for all 1, since

la®)| =

J-e_”“ip{;l) dA| < fmpu) dl < oo (2.12)

Thus, the derivative here is continuous. Now

a*(t) = a(—1) (2.13)
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so that
di; a*(i) - = — % alt) o = —d(—s) (2.14)
Since Q(t) = a(t)a*(t),
d . 5
5 20 W a(— s)a(s) — a(s)a(—s) (2.15)
In particular,
0(0) = 4(0,) — a(0.) =0 (2.16)

since a(0) = 1 and a(¢) is continuous so that a(0,) = a(0_). We emphasize
that the semiboundedness of H, which ensures the continuity of the deriv-
ative, is an essential ingredient in the proof. Otherwise, consider the usual
Breit-Wigner weight function p(4) = 1/(1 + A2), for which

a(t):ir sl O @.17)

The magnitude of the corresponding derivative at t = 0 is

, 1= idi
iar{ﬁ)lﬂﬂ;ﬁ-m“”12 (2.18)

Notice that this integral diverges at both the lower and the upper limit;
hence it is indefinite. This is manifested by the discontinuity at ¢ = 0:

a0,)=—1 and 4(0.)=1

The preceding proposition shows that at sufficiently small time, the non-
decay probability Q(r) falls off less rapidly than would be expected on the
basis of the exponential decay law. Thus, if the unstable system is moni-
tored for its existence at sufficiently small intervals of time, it would appear
to be longer lived than if it were monitored at intermediate intervals, where
the decay law is exponential. The quantum Zeno’s paradox states that in
the limit of continuous monitoring, the particle does not decay at all. In the
present case of a one-dimensional subspace of undecayed (unstable) states,
this conclusion follows as an immediate corollary to the preceding proposi-
tion. It can easily be seen that if the system prepared initially in the
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unstable state | M) is (selectively) monitored on its survival at the instants
0, t/n,...,(n— 1)i/n, t, the probability for its survival is given by

[ H
. Q(;)
Since Q(t) is continuously differentiable and Q(0) = 0, it can easily be shown
that

lim Q(i) - (2.19)

n—+o

independent of t. It is evident that the survival probability under discrete
but frequent monitoring will be close to 1 provided that t/n is sufficiently
small, so that the departure from the exponential decay law remains signifi-
cant. It is thus important to estimate the time scale for which the small-time
deviation from the exponential decay law is prominent.

B. Resonance Models for Decay Amplitudes

To estimate the parameters T; and T, which separate the intermediate-time
domain, where the exponential decay law holds, from small- and large-time
domains where deviations are prominent, we need to make a more specific
assumption about the energy-distribution function p(4) of the unstable state
| M. In fact, so far we have assumed only very general properties of p(4)
that are not sufficient to warrant the identification that | M) represents an
unstable state which behaves as a more or less autonomous entity with a
characteristic lifetime.

To formulate this resonance .requirement, we rewrite the nondecay
amplitude as a contour integral. To this end, we consider the resolvent
R(z) = (H — zI)™! of the Hamiltonian H. This forms a (bounded) operator-
valued analytic function of z on the whole of the complex plane except for
the cut along the spectrum of H, which we take to be the real half axis
[0, oo]. Under mild restrictions on the state | M), for instance, when | M)
lies in the domain of H?, we have

2 1 :
e HY MY = — ~"e_'“R(z}l M) dz (2.20)
27 Jeo
where C is the contour shown in Fig. 1. The nondecay probability is then

. 1 .
a(t) = (M| e™ ™| My = o— fe_‘z‘ﬁ{z} dz (2.21)
C
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z

Figure 1. The contour C in the complex 4 plane.

where
B(z) = <M |R(z)| M) (2.22)

The function f(z) is uniquely determined by the energy-distribution function
p(A) of | M) through the formula

Bz) = f —~lp El}z di (2.23)

and in turn determines the distribution function p(4) through the formula

p(A) = lim "L [B(A + i€} — B(A — i€)] (2.24)

e—0+ 2751

The function f(z) is analytic in the cut plane and is free of zeros there. We
may thus introduce

1
7(z) = 32) (2.29)

which is analytic and free of zeros in the cut plane. The nondecay probabil-
ity is then given by

=izt

i e
a(t) = _2?1 J; e dz (2.26)
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where the contour C is illustrated in Fig. 1. This representation of a(t) is
quite general and does not yet incorporate the important resonance condi-
tion alluded to earlier. The resonance condition may be formulated as the
requirement that the analytic continuation of y(z) in the second sheet
possess a zero at z = E, — $il" with E, > I" > 0. Under this condition, the
representation for a(t) shows that it will have a dominant contribution
e "Ete~T42 from the zero of y(z) in the second sheet and certain correction
terms to the exponential decay law arising from a “background” integral.
An investigation of the corrections to the exponential decay law then
amounts to an investigation of the background integral in Eq. (2.26). This
approach of considering the deviation from the exponential decay law has
been discussed in the past (see for example [23]). Here we investigate the
detailed properties of the background integral by making a specific choice
for y(z2).

To facilitate the choice and to relate our results to investigations on the
Lee model and the related Friedrichs model, we note that one can write
(suitable subtracted) dispersion relations for y(z). ’

For instance, if y(z) has the asymptotic behavior

|(z) — z| -T> z" (2.27)
with n < 0, then
_ 1 (= 1fA?
y[z)—z—lo+nL s il (2.28)
with
| = lim [+ i€) — 304 — ie)] 2.29)
e+04

On the other hand, if y(z) satisfies Eq. (2.27) with 0 <n < 1, then y(2)
satisfies the once-subtracted dispersion relation. With the subtraction at
z=FE

52

—— z—E [*_ /AP
Wo) =z —E, + yE)+— J;(A—z)(A—ES)d;' (2.30)

It may be noted that the form (2.28) for y(z) is the one obtained in
various model-theoretic descriptions of unstable states. All such descrip-
tions picture the unstable state | M) as a normalized stationary state of an
unperturbed Hamiltonian H, associated with a point spectrum of H,
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embedded in the continuous spectrum. The decay transition is caused solely
by a perturbation H, under suitable assumptions about H,, for instance,
that the transition amplitude of H; between the states associated with the
continuous spectrum of H, may be neglected in the evaluation of a(r). The
nondecay amplitude is given by Egs. (2.26) and (2.28) or Eq. (2.30), where

| fA)? = | <AIH | M) |? (2.31)
with | > being the continuum eigenkets of Hy.
Next, define
k = z1/2¢t4 (2.32)
and write
22) = §(k) = e™3(k — ko Yk — k-)é(k) (2.33)

with resonance poles as stated earlier at
1. - g
z=E; — 3 ilI' and z=e""Ey+ 2 ir (2.34)

In the k plane they are at
Ky = ke +d (2.35)

where k, = E}?e™* and § = A?¢™* with A'/? = T'/4E§/* (see Fig. 2). Sub-
stituting Eq. (2.33) into Eq. (2.26) and deforming the contour, we may write

a(t)—if e ¥ 2k dk
T 21 Jo (b — ko )k — k_)E(k)
= a,(t) + a,(t) + ay(1) (2.36)
with
e 1 E(__t —iEpt,—Tt/2
a,(t) = ) ko g Forg LY (2.37)

. {r)—ir e ¥k dk
7 2w | (k= ko )k — k_)E(K) .

i @ o =kip dk 2 ok
~2n L @ ke (1 i = ké) (238)
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Lk
+k° )
s S+k+ 2
8 S
e o =2
]
-k
S, 3

Figure 2. The contours defining the integrals shown in Eq. (2.36).

and a,(t) is a contribution that can be dropped owing to a suitable cancel-
lation. These three parts are associated with the deformed contour

C—>S=5,+5,+5,

illustrated in Fig. 2. Note that we do not have to include any contribution
from k_ .

To proceed further, one has to make specific choices for £(k). We may
now restate our problem in the following fashion. Given an amplitude of
the form (2.36) with a suitable choice for ¢, how does the decay probability
behave as a function of time? What are the characteristic times 7y and T,
for the system? How sensitive are these conclusions in relation to the spe-
cific forms assumed for £? In the following section, we attempt to answer
these questions.

C. Specific Decay Models and a Resolution of Zeno’s Paradox

In reference 41, two specific choices for £ are considered. For model I,
2 =1 (2.39)

This leads to a dispersion relation of the form of Eq. (2.30). For model II,

 —z— B2
B =T e A il

This leads to the dispersion relation of the form of Eq. (2.28). We look at
several aspects of these solutions.




140 E. C. G. SUDARSHAN, CHARLES B. CHIU, AND G. BHAMATHI

" 1. The Large-t Power Law and Its Geometric Interpretation

The large-t behavior of the survival amplitude for both models is given by

1
|a(t)| ~ const x pory) (2.41)

A slower than exponential decay, as mentioned in Section ILB is
expected from the general argument of Khalfin, though it could be like
exp(—t*~%). On the other hand, the specific ¢ ~*% law is not only a particu-
lar property of these special models, but a reflection of the kinematics of the
decay process. We show this as follows. We write | f(E)|? = | f(E)|*o(E),
where o(E) is the phase-space weight factor. Then from Egs. (2.26) and
(2.29),

(e | f(E)|? e
alt) = p L dE ~—~———--—E AE + ie]P a(E)e (2.42)

L B
_nL ETE T mp P

1 1t )
o~ — f dE a(E)e &
o0

T

x : J‘w dE a(E)e (2.43)
T Jo

for very large times, because of the rapid variation of the phase factor,
provided the functions f(E) and y(E + ie) behave gently near zero. The

phase-space factor ¢(E) has a power-law behavior in the neighborhood of
the origin. For a nonrelativistic system E = k?/2m,

dk
e e AR
o(E) = 4nk 7 E (2.44)

whereas for a relativistic system E = (k* + m?)*? — m, as E — 0,
o(E) = 4nk(E + m) ~ \/E (2.45)

Hence, in both cases Eq. (2.43) behaves as

j dE Ee_f5‘=r_3’2'f duﬁe_iu (2.46)
o o
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Thus the inverse-cube dependence of the probability of nondecay Q(t) may
be related to the structure of the phase-space factor, provided the form
factor f(E) is gently varying.

This power-law dependence has a simple geometrical meaning: The
“unstable particle” as such is not a new state, but a certain superposition of
the decay products. These latter states have a continuum of energy eigen-
values. The precise manner in which the superposition is constituted
depends on our definition of the unstable particle, and the development of
this wave packet as a function of time depends on the dynamics of the
system. Eventually the packet spreads so that the decay products separate
sufficiently far to be outside each other’s influence. Once this state is
reduced, further expansion is purely kinematic, and the amplitude decreases
inversely as the square root of the cube of time. Consequently, the overlap
amplitude a(t) also behaves in the same manner. The requirement of gentle
variation of the form factor is precisely that the corresponding interaction
becomes negligible beyond some large but finite distance.

In view of this geometric interpretation, we expect that any unstable
system with well-behaved interactions would exhibit such a power law
rather than an exponential law.

2. Two Types of t Dependence Near t = 0

The short-time behaviors of the probability Q(t) given by two models are
very different, which correlates with corresponding differences in the spec-
tral moments. We recall that in the small-t region, the survival amplitude
can formally be expanded on the same terms as the spectral moments, that
is,

a(t) = J‘e_“’p(t) di=1—i(t — %iz = (2.47)

However, in the smail-t_region where E,t < 1, both models allow the
expansion in power of \/E o t. For model I, we obtain

a(t) > 1 — const + e™4¢!/2 (2.48)

which is compatible with the fact that without the form factor, from inspec-
tion of Eq. (2.36), the first spectral moment is infinite. Equation (2.48) leads
to the decay rate, as t — 0,

0(t) o —— - 0 (2.49)

=t
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For model II, we obtain
a(t) = 1 — i const + e~ /4312 (2.50)

which is compatible with (1) being finite and {A?) infinite. Equation (2.50)
leads to

Qo — 1250 (2.51)

Model 11 is an example of the proposition considered in Section ILA,
where the energy expectation value for the resonance state (M |H|M) is
finite. From general arguments, we already concluded that as t — 0, the
decay rate should approach 0. Equation (2.51) is in agreement with this
conclusion. If (M |H|M) does not exist, such as in model I, as ¢ — 0, the
rate of decay is infinite. So the exponential law again does not hold. We see
that in no case could the exponential law hold to arbitrarily small values of
t. The conclusion that we have arrived at only depends on the basic notions
of quantum mechanics; it is therefore quite general.

3. Repeated Measurements in Short- and Long-Time Limits

From the discussions above, we are led to two possibilities regarding the
leading-term behavior of Q(t) as t — 0:

Q(t)—’l—%r" and Qt)—> —at?™Y,  BA1 (2.52)

Because 0 < Q() < Q(0), « >0 and f >0 [we are not considering non-
polynomial dependences such as t’(log t)*], the ranges f <1 and f> 1
behave quite differently. In one case, the rate is becoming larger as ¢ — 0,
and in other case, it is vanishing,.

Now consider, as in Section II, the n measurements at times t/n, 2t/n, ...,
t. In the limit of n— co, the time interval t/n tends to zero. Hence, for
arbitrarily small t as n — o0,

a e\ 1 f>1 _
o fs@T-f 3z e

The first case corresponds to Zeno’s paradox in quantum theory. In the
second case, the limit as n — oo is 0. Thus continuous observation would
lead to a zero lifetime. The lesson is that quantum mechanics prevents us
from determining the lifetime of an unstable particle with “infinite preci-
sion.” There is a built-in tolerance of At = T, ~ 1/E,, where E, is the dis-
tance in the energy plane of the resonance pole from the first nearby
singularity, The latter is usually the threshold of the closest decay channel.
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With the time interval 0 < t < Ty, the time evolution is not governed by the
exponential decay law of the unstable particle. Depending on the dynamics
of the system, the apparent lifetime could be substantially lengthened or
shortened.

It is also interesting to determine what happens in the long-time limit.
We have seen that with reasonable dynamics, the asymptotic form is purely
kinematic. What happens with repeated measurement? The wave packet
has expanded beyond the range of interaction in accordance with the t~*/*
amplitude law: The measurement collapses this packet to the size of the
original packet we call the unstable particle, and the time evolution begins
again. For t/n > T,, we then have the behavior (t/n)”>*2. We attenuate the
unstable-particle amplitude by repeated observation. Naturally there is now
no question of continuous observation.

4. Laboratory Observations on Unstable Particles and Possible Resolution
of Zeno's Paradox

In these discussions we have dealt with the uninterrupted time development
~ of an unstable particle. What can we conclude about laboratory observa-
tions on unstable particles? Is it proper to apply these considerations to
particles that cause a track in a bubble chamber?

The uninterrupted time evolution was, we saw above, characterized by
three regions: (1) 0 < t < T}, the small-time region where Q(t) ~ 1 — (&/B)t’,
p>0;(2) T <t< T,, the intermediate-time region where an exponential
law holds; and (3) ¢ > T;, the large-time region where there is an inverse
power-law behavior. Of these, the intermediate-time region alone satisfies
the simple composition law

0(£)0(t2) = Qe + £5) (2.54)

In this domain, therefore, a classical probability law operates, and the
results for the two-step measurement are the same as for the one-step
measurement.

If the particle is making a track or otherwise interacting with a sur-
rounding medium and is thus an open system, the considerations we have
made do not apply. Instead, we would have to account for the interpreta-
tion of the evolution by the interaction and a consequent reduction of the
wave packet. The nondecay probability is now defined by the composition
law

01y, 131 s 1) = QE)OE) - Q1) (2.55)
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Hence, if t; =t, = --- =t, — 7, we can write
O(nt) = [Q(x)]" (2.56)

so that for times that are large compared with t, the dependence is essen-
tially exponential, independent of the law of quantum evolution g(z). If the
interruptions do not occur at equal intervals but are randomly distributed,
the behavior is more complex, but this has been considered by Ekstein and
Siegert [64] and Fonda et al. [9]. The pure exponential behavior is some-
what altered, but the power-law dependence of the long-time behavior of
the uninterrupted time evolution is no longer obtained.

We wish to call particular attention to this result: This long-time behav-
ior of the closed and open systems are essentially different. Classical prob-
abilistic notions do not apply to the closed system. The reason is not
difficult to discuss: Classical intuition is related to probabilities which are
the directly “observed” quantities. But probabilities do not propagate.
Propagation is for the amplitude. Despite this, it is difficult if not impossible
to observe the differences between the two. To be able to see the difference
we must reach the third domain ¢t > T,, but since 75 is much larger than
the mean lifetime, by the time this domain is reached, the survival probabil-
ity is already many orders of magnitude smaller than unity. The variable T,
may be estimated in following manner. For large ¢, in Eq. (2.38) the inte-
grand peaks at k* = 0. Within the peak approximation, for the regular
terms in the integrand set k* = 0 and set

{k) > E0) =1 (2.57)

This leads to

i 46 [° _,, 2% 1 (* _,
al(!)‘“—i;‘iguektkzdk:n—%'r?ﬁj;e u? du

so the magnitude

Y2 4
|a(t)| ~ const E— VEE

0

T, is the time where the exponential pole term has the same magnitude as
this term, solving for

A2 | —TI
al(T}) = CDDSI(E'—O) ‘1_—.?'1%? = CKP(T TZ)
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For E, > T, we obtain

5 E, 3 E,
L~ + l_in(S In 1_) (2.58)

Notice that our estimate here is not sensitive to the details of the form
factor assumed as long as &0) = 1, which is certainly more general than the
models considered. Take the example of the decay of a charged pion,
T — uv

I'=(3x 1078 sec)™?

This leads to T, ~ 190/T. So, by the time the power law is operative,
O(t) < 10789, Clearly this is outside of the realm of detection.

In the small-time domain we have other physical considerations that
may prevent the conditions for Zeno's paradox from manifesting. This is
~ ultimately to be traced to the atomic structure of matter and therefore to
our inability to monitor the unstable system continuously. For example, in
our model II, where Zeno’s paradox is operative, in the Appendix of refer-
ence 41 one finds T, ~ 10 **T ~ 10?! sec for charged-pion decay. On the
other hand, we have checkpoints at interatomic distances, a time of the
order of 107 %3 x 10%% ~ 3 x 107 !? sec. We have no way of monitoring
the natural evolution of a system for finer times. Within the present range
of technology, according to the estimates, one is unable to observe the devi-
ation of the exponential decay law [65].

This resolution of Zeno’s paradox is quite satisfactory as resolutions go
in modern physics, but it raises a more disturbing question: Is the con-
tinued existence of a quantum world unverifiable? Is the sum total of expe-
rience (of the quantum world) a sequence of still frames that we insist on
endowing with a continuity? (See also [66].) Is this then the resolution of
Zeno’s paradox?

One special context which may point to the operation of the Zeno effect
in high-energy physics is in hadron-nucleus collisions. The collisions with
successive nucleons inside a complex nucleus by an incoming hadron are in
times of the order of the Zeno time and we would therefore expect a partial
quenching of particle production in such nuclear collisions. This effect has
been systematically studied by Valanju [61,62]. The Zeno time in high-
energy hadron-nucleus and nucleus-nucleus collisions has also been sub-
sumed as the “formation time” or the “healing time,” (for examples, see [67
and 68]).
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" III. MULTILEVEL UNSTABLE SYSTEMS AND THE
KAON SYSTEM

In this section we study multilevel unstable quantum systems. The most
common case in particle physics is the K°K® system, that is, the “strange
and antistrange” meson system.

A. Introduction

About four decades ago, Gell-Mann and Pais [69] pointed out that K° and
K° communicated via the decay channels and, therefore, the decay con-
tained two superpositions K, and K,, which were the orthonormal com-
binations of K° and K° which were, respectively, even and odd under
charge conjugation. With the discovery of parity and charge conjugation
violation and CP conservation, the terms K, and K, were redefined to
correspond to, respectively, CP-even and -odd superpositions. With the dis-
covery of the small CP violation, qualitatively new phenomena were
obtained with nonorthonormal short- and long-lived neutral Kaons Ky and
K. Lee, Oehme, and Yang [51] formulated the necessary generalization of
the Weisskopf-~Wigner formalism, which has since been used in the dis-
cussion of the empirical data. This phenomenological theory has the same
shortcoming as the Weisskopf~Wigner theory and the Breit-Wigner formal-
ism, as discussed earlier. For subsequent theoretical discussions on the
LOY model, see, in particular, the papers by Sachs and by Kenny and
Sachs [70,71].

Khalfin [52,53] has pointed out some of these theoretical deficiencies
and gave estimates of the departure from the Lee-Oehme-Yang (LOY)
theory to be expected in the neutral-Kaon system as well as in the D°D°
and B°B? systems. He asserts that there are possibly measurable “new CP-
violation effects.” We have reexamined this question in detail, formulated a
general solvable model, and studied the exact solution [50]. While bearing
out the need to upgrade the LOY formalism to be in accordance with the
boundedness from below the total Hamiltonian, our estimates of the correc-
tions are more modest than Khalfin's. We review Khalfin's work to pose
the problem and establish notation. '

In the LOY formalism, the short- and long-lived particles are liner com-
binations of K® and K°:

|K5>) (l KU)) (; -9)

=0l v={? 4 3.1)
(| k)" \iky) a) :
with |p|> +|q|* =1 and |p'|* + |4'|* = 1. The parameters p, g, p, ¢ are
complex; their phases may be altered by redefining the phases of | Kg) and
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| K, >. Generally, the states are not orthogonal, but linearly independent:
(Kp|Ks>=p"*p—q™*q+#0 (3.2)

Let j denote K° K° and a denote Ky, K, . Equation (3.1) can be rewritten
as

lay =Y 1> 1e> =2 | PR (3.3)

where R = UT. For a right eigenstate ]' @y, let the corresponding left eigen-
state be ¢(&|. Then in terms of the oblique bases,

EDNENCIFIEDNIIT Sy (3.4)

Let the “time-evolution matrix” of K® and K° states be defined by

K% | _ | K%
L K%»} - 6 o) -
with A(t) = {jle~""*| k), and the corresponding matrix in the Ky and K,
bases by
|Ks(t}>] _B (st>) 16
[I 0]~ Pk )

with B,,(r) = (&|e~ | >. The matrices 4 and B can be related in the fol-
lowing way:

Ay = ZB Cklay<ale™ ™| BY<BI >
= (RBR™Y) (3.7)

As in the LOY theory, for the time being, if we were to assume that K; and
K do not regenerate into each other, but otherwise have generic time evo-

lutions:
| S@) O
B(t) = [ 0 L(t):| (3.8)
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Then
A(t) = RB(t)R™!

__ 1 [pq’S +qp'L  —pp(S - L}] (39)
pd' +pq|l —q9q(S—L) qp'S+pq'L '
At this point, let us invoke CPT invariance, which implies A,, = 4,, or
pq'(S — L) = gp'(S — L). Since K; and Kg are states with distinct masses
and lifetimes, S — L # 0. In turn, p/q = p'/q". The states | Ks) and | K ) are
defined only to within phases of our choice; we may therefore set p’ = p and
q' = q. At this point we relax the normalization condition on p and ¢ and
write |p|? + | g|?* = {2 The transformation matrix and its inverse are now

given by
1{ p p) _ { (q —)
R=_ , R 1=— 3.10
C(—q q 2pq\qg p 1)

We adhere to this convention in the rest of this paper. Equation (3.9) also
implies that the ratio of the off-diagonal elements, that is, the ratio of the
transition amplitude of K° to K° to that of K° to K°, is given by

)=—= —2 = const (3.11)

To sum up, the assumptions that (1) K5 and K, are definite superpositions
of K° and K° states, (2) there is no regeneration between K and K, and
(3) CPT invariance holds, imply the constancy of #(f). Khalfin’s theorem
[52,53] states that if the ratio r(z) of Eq. (3.11) is constant, the magnitude of
this ratio must be unity. His proof follows.

The matrix elements Ay(t) are given by the Fourier transform of the
corresponding energy spectra, that is,

Ay(t) = r di e HCu(A) (3.12)
0

where

Cpld) = ¥ (jliny{an| k) (3.13)

The summation is over different channels; A is the energy variable. To be
precise, it is the difference between the relevant energy and the threshold
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value. So 4 =0 is the lower bound of the spectrum. Using the sesquilinear
property of the inner product, that is, {4 |B)* = (B| A, Eq. (3.13) implies
that

Cu(A) = CHA) (3.14)

Now we explore the consequence when Eq. (3.11) holds. Denote r(t) by the
appropriate constant r; one may write

D(t) = A;5(t) — rA,,(t)

_ J “ 41 eH[C, () — rCoah)]
0

=0 (3.15)

Based on the integral representation, with 4 being positive, D(f) may now be
extended as the function of the complex variable ¢ Since
e iM = gTiARer, pAImt the function D(f) can now be defined in the entire
lower half plane. By the Paley—Wiener theorem [35], D(t) is also defined at
the boundary of the function in the lower half plane. So

D(t)=0 for —0 <t<w (3.16)
The inverse Fourier transform of D(t) implies
Ci3(A) = rCyy(4) = Cy5(A) —rCI,(A) =0 or |r|=1 (3.17)

This conclusion contradicts the expectation of the LOY theory. In par-
ticular, when there is CP violation, it is expected that

2

= const # 1 (3.18)

[r] =

We have investigated the situation in the framework of the Friedrichs-Lee
model in the lowest section with the particle ¥, and its antiparticle V,. They
are coupled to an arbitrary number of continuum N6 channels. We express
the time-evolution matrix in terms of pole contributions plus a background
contribution. We show that because of the form-factor effect, both the cor-
rection to the pole contribution and the background contribution give rise
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to a finy regeneration between K, and Kg. This invalidates one of the
original assumptions needed to deduce the constancy of the ratio #(r).
Therefore, in the generic Fredrichs-Lee model, the assumption that K, and
K are fixed superpositions of K® and K° states is not valid. In the remain-
der of this section, we set up the dynamical system which involves multi-
levels and multichannels and investigate the generalization of Khalfin's
theorem. We also look at the solution to the neutral Kaon problem beyond
the Wigner—Weisskopf approximation. We show that in our solution the
ratio [A,,(t)/A,5(t)] does depend on time, which invalidates one of the
assumptions of the Khalfin theorem, and predicts insignificant but nonzero
departure from LOY model values in the region where the resonance pole
contribution is dominating.

B. Multilevel Systems and Time-Evolution Matrix

1. Eigenvalue Problem

In the generalized Friedrichs-Lee model, the Hamiltonian is given by
N @
H=3) myVIVi+ } m,, NN, + j do wd*(w)p(w)
Jr k n=1 0
+ I do ), gu(@)V; N} ¢*(w)
0 Jon

+ J.qo do Y. gi(@)VIN,d(w) (3.19)

Jvm

Here the bare particles are V;, V,, N (1 <n < N), and 8 particles. The fol-
lowing number operators commute with the Hamiltonian:

I

Q, =Y VIV;+ ) NIN,
Q,=) NIN,+ de P (w)P(w) (3.20)

Denote the corresponding eigenvalues by ¢, and g,. The Hilbert space of
the Hamiltonian is divided into sectors, each with a different assignment of
q, and g, values. We will only consider the eigenstates of the lowest non-
trivial sector, where q, = 1 and ¢, = 0. Here the bare states are labeled by
[V, | V2D, and |n, @), with n =1, 2, ..., N. Since there are NV independent
continuum states, for each eigenvalue A, there are N independent eigen-
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states which can be written as
i’ls n) = Z | H)[ai]jn + .f dw Z [ms w)[bi{w)]mn (3'21)
F 0 m

where
[aljjn = <I/_; | ;'s ")3 Ebj{w)]mn = <m1 w | A: H) (3'22}

In Eq. (3.21), the integration variable of the |m, @) state, w, begins from 0.
Therefore, it now stands for the difference between the energy of the state

and the threshold energy.
Using the Einstein summation convention, the corresponding eigenvalue

equation is given by

m;j gule) (adm | _ . [a:la
l:g,:u{m) wd(w — m')‘sm::l{[bi(w‘)]tn} - &{[b A(co)]m} (3.23)

For brevity, hereafter we suppress the matrix indices. Equation (3.23) leads
to

(AT —m)a; = {g(@)b,(»)) (3.24)
(4 — wby(w) = g'(w)a, (3.25)

<..‘>E‘[]mdm..,

We choose the boundary condition such that, in the uncoupled limit, b, is
given by

[bi(@)]n = (4 — )6, (326)

Such a solution is given by

_ g'(@)a;
b(w) = oA — w)l + T—@+ie (3.27)

Substituting Eq. (3.27) into Eq. (3.24) leads to

YR 7O
(T — miay = o) + <li(_‘ic%‘%>a; (3.28)
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or
a;=K™g (3.29)
where
K =il —m — G(4)
A—=myy —Gyy —my, — Gy, :|
= 3.30
{: my; — Gy A—myy — Gy ( )
with
o g(@)g'(w)
G = —=—
Aditoie) <l—a)+ie
[, glw)g'(w)
—L dml—w-i—ie (3.3

2. Time-Evolution Matrix

It follows from Eq. (3.31) that, for A real, the 2 x 2 matrix G is

an

. gl(w)g'(w)
A | doy —————
LG(A + ie)] J; mi—w—fe
= G(4 — i€) (3.32)
This in turn implies the ide_ntity that, for real A,

G(i + i€) — G'(A + ie) = ~2ig(A)g'(})
= K'(A + ie) — K(A + i€) (3.33)

The time-evolution matrix is easily evaluated:
Ay ft) = Ckle ™ >

. j " di e Y Gk anyCn]

= .rp di e” M [a(D)a'(A)]y; (3.34)
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From Egs. (3.29) and (3.33),
K'—-K
aat = K™ 'gg' (K" + K-‘[—-—,](K*)*
—2ni
i -1 | -1yt
L — (K 3.35
= [K™! = (™Y1 (339)
Substituting Eq. (3.35) into Eq. (3.34), we get

A DI = é jm die MK YA +ie)— [K 1A +iel'},;, (3.36)
0

But

[K~ YA+ i)]t = {[A—m— G + ie)]'}
= [K(4 —i)] ™! (3.37)

' Based on Eq. (3.37), Eq. (3.36) can be written in a contour integral represen-
tation (see Fig. 3):

A = é J; di e K™Y D)y,
= é i di e }-\TE"(J%—) (3.38)
where
A=det K (3.39)
and
N(A) = Cof K = Cof(4d;; — my; — Gy;) (3.40)

We recall that the cofactor of the element of 4,; of a square matrix 4 is
equal to (—)**/ times the determinant of the matrix which A becomes when
kth row and jth column are deleted.

Because G(A) is defined through the dispersion integral (3.31), the A
dependence of G, and in turn, the integrand of Eq. (3.38) may be extended
to the entire cut plane of A.
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-
N

Figure 3. The contours C and C' in the complex 4 plane.

3. Completeness Relation

At t =0, from Eqgs. (3.34) and (3.38),

A £0) =j dA Y <k|Any<{in| j>

o

- Nufd) :
=]l Bm (3.41)

From Egs. (3.36) and (3.37) the asymptotic behaviors are

Ny fA)— a1 for k=j
NyfA)— a2 fork#j (3.42)
A(A) = A"

Deform the contour as depicted in Fig. 3. Since the integrand is analytic,
using Eq. (3.42),

— Nefd) _
Af0) = — - J; b =4, (3.43)
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or
J. di Y <k|Any{dnm| jy = &, (3.44)
0 n

which is the completeness relation.
C. Applications to Neutral Kaon System
1. Formalism

So far our treatment has been general. Now we want to specialize to the
neutral-K system. We identify K° and K° as ¥, and V,. The K and K, are
the unstable particles which correspond to the second-sheet zeros of the
determinant of the matrix K:

K=(A—m11—G“ my, + Gy, ) (3.45)
my; + Gy A=my; — Gy,
where we have applied the CPT theorem and set m,, + G,, + G4,. The

discontinuity of the G-matrix is given by

Gy + i€) — G4 + i€) _

= —[o)g" (W,

= —x ¥ (k|H|Any{in| H| j>

with k, j = K9, K° (3.46)

In the Weisskopf~Wigner approximation, G, {4) is replaced by its imaginary
part, evaluated at the resonance mass

Gfd) = —i % (3.47)

This is the approximation of the LOY model, where the eigenvalue problem

of the type
AB\/r r
Ky =Ay or (CA)(s) = l(s) (3.48)
is considered.

We digress a little to examine the solution of this eigenvalue problem in
order to establish the relationship between r and s and the mass and width
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pararhctcrs. For the neutral K-system,

o . T
A=m11—1%, B=m12—1—-21—2, C=mzi--1—2:5l
The complex eigenvalues are
I X
/?.L=mL-—-I?L, 25=ms-—1-§'§_

Substituting these quantities back in the eigenvalue equations, we obtain

[T+ Ty

: (3.49)

TrK=24A=1+ 15 or A=%(1L+ls)=mu-

In terms of the eigenvalues and the components of the corresponding eigen-
vectors,

r
= % (AL - )-s)
s
C= 5 (A — 4g)
or

r\> B
(;) = E (3.50)

‘Making the correspondence between the definition of the K, and K states
defined earlier, for the K| state we get

r. B2 _ NP (3.51)
s—VcTqg %'_N(Q)

and for the K state:

B
-S'i= -=qu or wS=N(-—-E) (3.52)
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2. The Ratio [Ay,(t)/Az;(1)]

We proceed to evaluate the ratio A,,(t)/A,,(t) within the Weisskopi—
Wigner approximation. Again we write

A=(— A — iy) (3.53)

except that now Ag and A, do depend on A. We are interested in the effect
due to A-dependence of G. For our purpose, we find it to be adequate to
work with a common form factor and write

GfA) = —i 1:21‘1 F(4) (3.54)
where I'y;/2 is independent of A. Then
- 1-\.11 -
115 =Mny; —1 T F[A) + d(ll}
1 . rll
Ay =my —i=° F(A) — d(d) (3.55)

#* if2
d(}) = ﬂ:mu = -r—?f% F{l}][m‘fz ] r—zlé m}}}

The transition amplitude

- — e M1z — i 12/2)F(4) 1 _ 1
Al = o L an e~ P L |:.l—ﬁ.s ,1-,1,_] (3.56)

The contour C here is illustrated in Fig. 3. It is to be deformed according to
Fig. 4, such that the integral can be written as the sum of pole contribution
and the background contribution. We further assume that F(4) varies in
hadronic scale (~1 GeV), so that it is a smooth function in the neighbor-
hood of A = mg, m; . Expanding F(4) about 4 = m,,, at A = mg and A = m,,
the corresponding form factors are respectively given by

Fy=1+Fd, F,=1-Fd d=dm,,) (3.57)

Deforming the contour in the manner indicated in Fig. 4, the pole term
gives

40| =5 (1= 812)e™ 5 — (14 85)e” ]

pole
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Figure 4. Tllustration of the deformation of contours C, and C, into the pole contributions
plus the background contribution.

with
. ', F'p Iy,
G1p =1 2 g O(Zmu (3.58)
Ap()| =R (1= &y00e 7 — (1 + 8,,)e]
pole 219
with
T F' g Iy
= -~ 0| —= 3.59
021 =1 2 p O(2m11 ( )
So
Ay,(t) p
() ~ ==+ (3.60)
pole AZl{t] pole qz
where the “ -+ term carries a time dependence wherever
8,2 # 08, oOr 53-12;&1 (3.61)
12 21 1—1?2 p2 . .

The amount of departure is bounded by the order of magnitude of é,,
which is O(I", ,/my ;).
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For neutral Kaons,

I Ts
2

myy = mg — 2m, ~ 200 MeV ~ 3 x 10?* sec ™ (3.62)

~ 5% 10*% sec”!

So

6~02x10"13

The background term also contributes to the ¢ dependence of the ratio I'(z).
From general arguments it can be shown that

Ay,(1)

4,0 (3.63)

bk

In the very small ¢t region and in the very large t regions, where the
background-term contribution is significant and when p/q # 1, a further
departure of the value of p?/g* from the Weisskopf-Wigner approximation
may be expected.

3. Regeneration Effect

Next, we demonstrate that there is a regeneration effect in the present solu-
tion, which invalidates one of the assumptions stated in Section IILA,
leading to the conclusion of the constancy of the magnitude of the ratio r.
The presence of the regeneration effect is inferred by the presence of the
nondiagonal element in the time-evolution matrix B of Eq. (3.6). Based on
Egs. (3.9) and (3.38),

B() = R™'A(HR

i . R!NR
=— | dle™¥ ——— 3.64
2:;[ ¢ A (:6)
with
R--1NR=L[2P4N11‘—{N12‘32+N21P2] Nuqz_Nzlpz ]
2pq —Ny,q* + Nyyp? 2pgNy1+ (N12@* N3y p?)

(3.65)
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We focus our attention on the element B, ,, which leads to the regeneration
of K from K :

By; =Ny;4* — Ny, p°

T
= (m.lz =1 _213 F)‘Iz — (m}, F)p?

I Ity
—i(F — 1}(—2’-% q° - f pz) (3.66)

In the last step, we used the relations p* =m,, — i{I";,/2) and g* = m¥},

— iT¥,/2). So

F(A)—1
A

i ;
Bi)=v o L diei (3.67)

where v =2 Im[(I",,/2)m?,]. So the regeneration correction occurs only
when v # 0, that is, when there is CP violation. Deforming the contour, we

get

Bi,(t) = Bi5(1)|  + Bya(r) (3.68)
poles bk
with
By,(1) = -2% [(Fg — e — (Fy — 1)e "]
poles

_ v;?' (e_i)..s: + e—ij.,g) (369)

and
B,()| = —vJ(@) (3.70)

bk

Here J(t) represents the background integral. It is complicated to evaluate
J(t) for general values of t. However, for both small- and large-t regions for
the simple form of form factors, the background integral is manageable. In
the small-t region, it can be shown that [50] '

By 5(2) oc Im(I"y , m¥,)t 3.1)
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Here, the first power in ¢ is the expected time dependence for the transition
amplitude. Furthermore, there is always the Zeno region, in the sense that
frequent observation would inhibit the transition from the “1” state to “2”
state and also vice versa. For large ¢,

1
By,(0)| o< Im(I'y, mYs) perF] (3.72)
bk

Once again the inverse power law associated with a geometric expansion
picture is obtained.

In summary, we see from this analysis that a quantum system with two
metastable states which communicate with each other exhibits interesting
phenomena in its time evolution. For its short-time behavior, the quantum
Zeno effect obtains; for very long-time behavior, there is a regeneration
effect even in a vacuum, unless the long- and short-lived superpositions are
strictly orthogonal. In the Kaon complex, the short-lived particle K¢ has
passed from the exponential regime to the inverse power regime before
appreciable decay of the K; or regeneration of the Ky takes place. The
- CPT invariance making the diagonal elements of the decay matrix in the
K° K° basis equal is crucial to the nature of the time evolution. In the
study of communicating metastable states in atomic physics, such an addi-
tional constraint of CPT is not present: consequently, the decay exhibits
richer features. We present the general study elsewhere. Suffice it to observe
here that the asymptotic and Zeno-region time dependence are very much
the same as with a single-metastable state decay: This is not surprising,
because the generic arguments apply without restriction to the number of
channels involved.

1V. GENERALIZED QUANTUM SYSTEM:
ONE-LEVEL SYSTEM

Thus far our attention has mainly been focused on the features in the time
development of unstable quantum systems, which show the departure from
the pure exponential decay of the Breit—Wigner approximation. This devi-
ation arises when one takes the continuum spectrum into account. Here
resonance is a pole in the survival amplitude or, more generally, in a tran-
sition amplitude, on the second sheet. This is to be in contrast with the
Breit-Wigner approximation, where the resonance poles are on the physical
sheet. The “physical sheet” and the “second sheet” designations here have
important distinctions. From the requirement of causality, it can be shown
that transition amplitudes are analytic on the physical sheet. The presence
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of complex poles on the physical sheet implies the violation of causality.
Since we want to work with a causal theory, resonance poles must be iden-
tified with the second-sheet poles and the deviation of the exponential
behavior in the time evolution is expected. We then proceed to consider the
generalized quantum system through the use of analytic continuation.
Within this framework, the resonance pole may be identified as a gener-
alized quantum state.

A. Introduction

As alluded to in Section I, orthodox quantum mechanics is formulated in
a vector space over complex numbers with a sesquilinear inner product
[72,73]. In most applications the vector space is a separable complete space
and often taken to be a Hilbert space [5,74,75]. The vector space, except in
cases of “spin” systems with a finite basis, is made up of I* functions of one
or more variables or a vector of such functions. The dynamical variables
are taken to be linear operators of finite norm. Among them the self-adjoint
operators form a preferred class and the observables are usually identified
with them.

But it is convenient to deal with unbounded operators like the canonical

- coordinate, momentum, or the Hamiltonian. Such operators do not have an
action on the whole vector space because they could make the length of the
image vector unbounded and thus not in the space; so we have to restrict
the “domain” of the unbounded operator.

Even a further departure is often needed when we deal with an operator
with a continuous spectrum: it is useful to introduce ideal vectors [72] with
distribution-valued scalar products.

When the vector space is realized by functions of a certain class, it may
be possible to consider analytic continuation of such function spaces with
an associated bilinear form but with two analytic vector spaces being
defined: the basic vector space and the space of linear functionals on this
space. Of course, this generalization could have been considered without
analytic continuation. If the base space topology becomes stronger, the dual
space topology becomes weaker and vice versa. In a Hilbert space, the two
topologies are the same (completeness of all Cauchy sequences!) with a
reflexive antilinear transformation connecting the base space (ket) vectors
and the dual space (bra) vectors [72]. In the context of density operators
this has been emphasized by Segal [76]. In the context of vectors in a
Hilbert space this formalism due to Gelfand [77], and amplified by Antoine
[78] and Bohm [7], is called the Rigged Hilbert space. While such a gener-
alization is by choice for Hilbert spaces, both in the Segal context and in
the course of analytic continuation, the dichotomy between the base space
and the dual enters automatically.
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Dirac introduced the notion of analytic continuation of vector spaces in
the context of the “extensor” representations of the Lorentz group in the
1940s, followed by Kuriyan, Mukunda, and Sudarshan [79], who obtained
the master analytic representations of noncompact groups. Nakanishi [24]
had employed the notion of an analytically continued set of “wave func-
tions” in the context of a treatment of unstable particles in quantum mecha-
nics. The first systematic generalization of the quantum vector space by
analytic continuation was formulated by Sudarshan, Chiu, and Gorini [42].
Rigorous treatment of the problem with careful attention to functional
analytic details have since been given [80].

The problem of decaying particles, scattering resonances, and generic
metastable states in quantum physics continues to be of current interest.
The long-time behavior departing from exponential decay exhibited by
Khalfin [33], the short-time Zeno behavior [34,36], and the detailed tran-
sition behavior of quantum metastable excitations constitute a complex of
rich phenomenology [41]. It has further been enriched by the multitude of
features in the neutral Kaon decay and that of other such particles [50] and
in the cascade decay phenomena. Recently, Yamaguchi [81] raised impor-
tant questions about the behavior of decay amplitudes and the possibility
that short- and long-lived Kaons are orthogonal whether CP is conserved

_or not. From a somewhat different point of view Tasaki, Petrosky, and
Prigogine [37] have considered this question with special attention to the
breaking of time symmetry in decay.

Apart from these questions, there has been some lack of precision con-
cerning analytic continuation and scattering amplitude singularities: not
enough attention has been paid to redundant zeros and discrete states
buried in the continuum.

Complex variables, analytic functions, and topology are only aids to the
mathematical discussion of physical phenomena; an essential part of the
task is the proper identification and interpretation of the mathematical
results. Not all quantum theories involving analytic continuations are alike,
nor is their scope the same; several treatments are lacking in one aspect or
the other. For example, many authors act as if poles in the analytic contin-
uation are the only relevant singularities [8]. On the contrary, we show that
the treatment of scattering amplitudes involving unstable particles requires
complex branch points, We have therefore made a specific attempt to spell
out in some detail the theory that we introduce. The use of solvable models
enables us to illustrate many relevant features of the theory.

The most important point that we emphasize is that only suitable dense
sets in the analytically continued spaces have a corresponding dense set of
states in the space with which we begin the analytic continuation. Individ-
ual states in one space may or may not have analytical partners in the



164 E. C. G. SUDARSHAN, CHARLES B. CHIU, AND G. BHAMATHI

generalized spaces. The analytic continuation is therefore basis dependent
and not every vector in the continuation may have direct physical interpre-
tation. The poles are examples of such objects. '

The outline of our presentation below is as follows. In Sections IV.B and
C, the generalized vector space of quantum states is used to study the corre-
spondence between the physical state space #° and its continuation ¥. We
begin with the observation that the scalar product between an arbitrary
vector in the dense subset of analytic vectors in # and its dual vector has an
integral representation. While keeping the scalar product fixed, the analytic
vectors may be “analytically continued” through the deformation of the
integration contour. A typical analytically continued integral representation
of present interest integrates along a deformed contour in the fourth quad-
rant of the complex energy plane and encircles those “exposed” singularities
on the second sheet, if any (i.e, those between the real axis and the
deformed contour). The deformed contour, together with the exposed singu-
lavities, constitutes the generalized spectrum of the operator in the continued
theory.

In Sections IV.D and E, simple two-body models, the Friedrichs-Lee
and the Yamaguchi, in the lowest sector are studied with special attention
to the unfolding of the generalized spectrum. Here the “exposed” singu-
larities, if present at all, are simple poles. We defer more complex situations
involving multiresonance levels and an arbitrary number of two-body decay
channels to Section V and a case with three-body decay channels to
Section VL :

In Section IV.F, we observe that the predictions based on # and ¢ are
expected to be the same. Since a pure exponential time dependence is not
possible for states in #, it should not be possible for states in 4. On the
other hand, the Breit-Wigner resonance does correspond to a pure expo-
nential decay and it realizes the semigroup of time evolution. However, in
such a case, one needs to give up the positivity of energy and define states
with all possible values of energy from — oo to + co.

In Section IV.G, we recall the two possible disparities between poles in
the S-matrix and the discrete states in the Hamiltonian. In particular, there
can be a pole in the S-matrix without a corresponding state in the complete
states of the Hamiltonian. Conversely, there may be a discrete state of the
Hamiltonian, which does not have the corresponding pole in the S-matrix.
We show that these disparities continue to be admissible in the generalized
vector space. In Section IV.H we consider the analytic continuation of the
probability function and the operation of time-reversal invariance.

Our concluding remarks are given in Section IV.I. Two distinct views on
what constitutes an unstable particle are contrasted. One view is to identify
an unstable particle as a physical state of the system which ceases to exist as
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a discrete eigenstate of the total Hamiltonian. The survival amplitude of the
unstable particle cannot ever be strictly exponential in time. There is no
autonomy in its time development. It ages. Therefore, the unstable particle
does not furnish a representation of the time-translation group. The other
view is to identify the unstable particle as a discrete state in the generalized
space %. It has a pure exponential time dependence. The time evolutions
form a semigroup. Although the latter appears to be elegant, it is deduced
at the expense of giving up the very starting premise of the lower
boundedness of the energy spectrum.

B. Vector Spaces and Their Analytic Continuation

1. Vector Spaces # and #' in Conventional Formalism

Consider an infinite dimensional vector space # over the field of complex
numbers [72] with vectors ¥, @, .... Then, if a, b are complex numbers,
ay + b is also a vector, and so are finite linear combinations. If {|e"')} is
a countable basis, then any vector i can be approximated to any desired
limit by linear combinations of the form 3 a’|e®) = |y,>, where the
sequence {|¥,>} converges to . A linear operator is a linear map from
vectors in # to vectors in 5. The linear functional mapping each vector in
# to a complex number constitute the dual vector space 5’ to . A basis
{9} in the dual vector space # ' may be obtained by considering the
linear functional

s
|e”y —— §,, and the correspondence: | (f7]  (4.1)

Thus we can put the basis vectors into one-to-one correspondence, but the
correspondence is antilinear:

al em> + b e“’]) iy aT(f“'}| + b’r(fls)i (4.2)
The linear functional can be thought of as the scalar product of vectors in
J, ¥ bilinear in them:
v
b —— W, P=Yl¢p>;, veH peH (4.3)

or as a sesquilinear form in # by making use of the antilinear correspon-
dence (4.2) between bra and ket vectors.

Given the basis vectors and the notion of scalar products, we can intro-
duce the completeness identity. If we have a bra (y| and a ket | ¢}, we can
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define a linear operator by the vector valued linear functional:
1> = <l x>l o> 44
and identify it with the linear operator
A =9yl (4.5)

In particular we can introduce the linear operator

Z !e(r1><e(r}|
which acting on any vector | ¢ reproduces itself:

T 1695¢e1 63 = T 183 |ale)
r=1 s
= Y abale? =16

Hence it is the unit operator:
Y e)e| =1 (4.6)
r=1

This is the completeness identity and provides a resolution of the identity. A
linear operator V is isometric if for every vector ¢,

Vol|Ve)=<ol¢> (4.7)
Given an operator A, its adjoint operator A" is defined by
(@AY =LAy (4.8)
An isometric operator V satisfies the relation
Vv =1 (4.9)

The adjoint is an antilinear operator valued function of operators. An oper-
ator whose adjoint coincides with itself is called selfadjoint.

At =4 (4.10)
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An isometric operator is unitary if in addition to (4.9) it satisfies

VVt=1 4.11)

If a linear operator C has the form

C =) ¢, e (4.12)

for some convergent sequence {c,} and some basis {|e™}} it is said to be
completely continuous. A completely continuous operator is the discrete
(possibly infinite) sum of projections:

C=Yc,L,; T, =]e"y{e™| (4.13)

with
LI =TT 8 >, =1 (4.14)
Equations (4.12) and (4.13) also give the spectral decomposition of a com-
pletely continuous operator:
Cle™) = c,|e™> (4.15)

For any operator A we can consider the resolvent as the analytic operator-
valued function

R(z; A) = (A —z1)"? (4.16)
R(z) is regular acting on # everywhere except for the values
Z=C,

which constitute the spectrum of A. More generally, for any operator A, the
set of points (discrete or continuous, finite or infinite) where the resolvent
operator fails to be regular in # (i.e., the action of R(z) considered as an
analytic function of z is not regular for any vector in ) is called the spec-
trum of A.
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For a selfadjoint operator with a continuous spectrum, there may be no
normalizable eigenvector in #. In all the explicit examples we have con-
sidered, the continuous spectrum has no normalizable eigenvectors. One
can either introduce ideal eigenvectors (of infinite length!) following Dirac,
or consider a continuous family of spectral projections II(4) for eigenvalues
“less than” 1 by introducing a notion of ordering in the continuous spec-
trum (when it is possible!) and writing a Steiltjes operator valued integral
generalizing the spectral decomposition and completeness identity (4.12),
(4.13), (4.14):

A= J. A dII(2) (4.17)
de(l) =1; O =111, p=>4 (4.18)

So far, we have considered the generic form A, the Hilbert space 3, and the
vectors in 5. In the study of quantum systems the space # is realized in
terms of the states of the system and the generic form of the state vectors is
in terms of square integrable functions of one or more real variables. A
dense subset of such I? functions is the class of analytic functions (restricted
to real values of the arguments).

2. Analytic Continuation of Vector Spaces

This dense subset of # can be analytically continued. But there are many
choices of analytic I? functions with varying domains of analyticity and
correspondingly many choices of ¢ and 4. The dense sets of analytic func-
tions form a partially ordered set; and continuations using functions analy-
tic in a domain that coincide with the analytic continuation using functions
analytic in another domain, and will coincide within their common domain
of convergence. Linear relationships are preserved; and we can define
analytic linear operators to be those that, acting on an analytic function,
produce another analytic function. Needless to say, the notion of analytic
continuation is in terms of the specific I? function realization of the space
# and the domain in which % is defined depends on the dense subset
chosen. Because the correspondence between vectors in # and ' is anti-
linear, we must analytically continue these spaces separately to produce a
family of generalized spaces % and %.

The notion of resolvent and spectrum applies to the generalized family of
spaces 9.4, The eigenvectors are now right eigenvectors in ¢ and left eigen-
vectors in €. For every vector in #, we have its dual vector in #'. The
product of the analytic continuations of a dense set of vectors in # (and
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hence ##') are in % % and may be called the norm of the vector in %. With
respect to this norm, we can define Cauchy sequences.

Because the analytic continuation is for both 4 and #' to ¢ and g,
scalar products and matrix elements of analytic linear operators are pre-
served. To this extent, the analytic vectors and operators can be thought of
as having different representations in the family of spaces %,%, which could
correspond to the analytic vectors and linear operators in #. However, the
analytic continuation is not of the entire space #’ into the completion of &,
with the norm defined as the product of the vector in 4,4 associated with
the vectors in #,2¢ . In particular, there are vectors in % which may not
have a counterpart in # and vice versa; for example, there are discrete
states in % which have no counterpart in 5. '

Finally, because the analytic continuation depends on the functional
form of the state vectors as a function of its arguments, the relevant
dynamical labels must be chosen. In the study of Hamiltonian systems, we
often have a total energy label as well as the values of a comparison Hamil-
tonian energy. On writing the ideal eigenstates of the total Hamiltonian as a
function of the comparison Hamiltonian energy, we look for analytic
_ vectors: this can be done if the total Hamiltonian represented in terms of
the functions of comparison Hamiltonian energies is analytic. The existence
of the comparison (“free”) Hamiltonian and its essential role in scattering
theory where the “in” and “out” states are defined has been known for some
time [82]. Formal scattering theory does make use of this representation to
go “slightly off” the real axis as far as the scattering amplitude is concerned.
The analytic continuation of scattering amplitude was extended to its
various sheets by many authors [14,83,84]. However, except for the work of
Nakanishi [24] and Sudarshan, Chiu, and Gorini [42] (see also [6] and
[37]), there was no consideration of the analytic continuation of suitable
dense sets in the state space #” to the family .

C. Complete Set of States in Continued Spaces

If {| 2D} is the set of ideal eigenvectors for a self-adjoint, nonnegative (total
Hamiltonian) operator so that
f I1(4) di = j |AYC(A| di =1; {lpy =6(A—pw (4.19)
(] 0

The vector

A dA (4.20)

) = fqﬁ(z}
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is a vector in # if
f | p{)|? dl < o (4.21)
(1]

If ¢b(3) is analytic in A in a suitable domain in the complex plane, we could
deform the contour to write the vector as a vector in % (see Fig. 5):

|é)> = L¢(2)|2> dz (4.22)

The analytic continuation includes a simultaneous continuation of the bra
vectors

yl= J.mlff(i}(-ll di (4.23)
into a vector in ¥:
W)= Lw’(})&' | dz (4.24)

The additional closed contours C, and C, encountered in the continua-
tion (see Fig. 6) are typical of poles and branch cuts. For resonance in
scattering, we expect to find complex poles, but for multiparticle states
involving unstable particles, we expect to have complex branch cuts.
Although Fig. 6 shows only one pole and one pair of branch points in the
finite complex plane, we may have more than one; and branch points may

Figure 5. The z-plane contours defining vectors in 4.
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Figure 6. Possible singularities encountered and the modified contours.

move to infinity. The completeness identity (4.6) is modified to

poles

1= J; dz|zy{z) + Y 12,545 ] +L dz| <L (4.25)

Furthermore, the scalar product remains unchanged in value:

Wy = J;@(Z)qb(Z) dz + Y Ylz)d(z,) + J; YOPC) dL (426

poles

Here and in Eq. (4.24), J(z) is the analytic continuation of the function
YH():
Y(z) = ¥*(z*) (4.27)

and the norm of |} is given by <-1;|lfl>. If we have a definite state (1)
(which may be thought of as the created unstable particle state), the survival
amplitude for the state is given by [36,41]

At) = QU le 1 > = tr(| Y > P e (4.28)

where H is the (total) Hamiltonian and can be expressed in the form of a
Fourier integral:

At) = Jml W(A) Pe~* dA (4.29)
(4]

This same survival amplitude can be computed in 4,4 if | ) is an analytic
vector:

Ar) = f . dz Y(zp(z)e ™™ (4.30)
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If the ‘analytically continued bilinear quantity is explicitly known, the pole
and branch-cut contributions can be calculated. We do this when we con-
sider solvable models like the Friedrichs-Lee [25,26] and the Cascade [44].
Suffice it to say that the survival amplitude can be defined for evolutions
that are both forward and backward in time; and for all times the absolute

value of the amplitude is bounded by unity.

For the generic case, the poles of the S-matrix coincide with the discrete
states in the generalized completeness identity (4.25). However, the existence
of a pole in the S-matrix is neither sufficient nor necessary to have such
additional discrete states in %. This is due to possible existence of redundant
poles and of discrete states buried in the continuum. We discuss this further
in another section.

D. Friedrichs—Lee Model States

A simple solvable model [2,25,26] is provided by a system with a discrete
state and a one-dimensional continuum so that the vectors are of the form

(1, d@)]" =@ (4.31)
with
DDy =n*n + jdw P¥(@)p(w) (4.32)

We choose a total Hamiltonian of the form
| Hn, (@)7 = A, $(@)]”
A =mon + J;mg*(w’)@b{w’) do'
Ap(w) = wd(w) + glom

Define the function

i N . r W do’ (4.33)

If &(4) has a real zero, it is for a negative value m [unless g(w) vanishes some
place in the interval 0 < @ < co]. If there is such a zero, there is a discrete
eigenvalue m for the Hamiltonian H:

) . (de] T2
Polw) = Nos 0= (dl A=m) (4.34)

m—
H[1no, $o(@)]" = mno, $o(@)]”
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There can be at most one zero. No such discrete state exists if

g—w—*(“ﬂif"f) 298 s (4.35)

o(0) = —mo+J

However, if for so-me value A = M > 0, we have the twin conditions
g(M) =0; a(M) =0 (4.36)

Then we can have a discrete state overlapped by the continuum.
There is a continuous spectrum 0 < A < o0 and a corresponding con-
tinuum of scattering states which are ideal states with continuum normal-

ization [82,85]:
|®,> = [, Pa(@)]” = 14>

o _ g*(Vg(e) (4.37)
oA+ i€)’ $ale) = 84 — ) + (A — w + ie)a(d + i€)

L7

. These states satisfy the orthonormality and completeness relations

mlmy =1, <{m{i>=0

(4.38)
A =684 — 1)
and
|m><{m| + >[d,ﬂ}.)(il = (4.39)
Here
[my = [Mg, po(A)]" (4.40)

These calculations are already available in the literature and involve
straightforward contour integration. If there is a discrete state buried in the
continuum [86-88], Egs. (4.36) and (4.37) show that there are two solutions
at this value M: a discrete state of the form (4.34) with m replaced by M,
and an ideal state with A = M which is a pure plane wave:

do —1/2 g(m] T
My = 0D 4
o -(5) s e
nonsingular |7
MY = [o, 5h— M) + temfs } (4.42)
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The state (4.41) would enter the completeness relation (4.39) and the
orthonormality relations (4.38).
The S-matrix for the ideal scattering states reduces to a phase:

S(4) = ol — ie)/afd + ie); O<i<oo (4.43)
If g(w) is analytic in w, so is

9(@) = g'(@) = g*(0*) : (4.44)

Then the continuum ideal states | 1> can be replaced by complex eigenvalue
ideal states denoted by the same symbol | A, which have branch cuts along
a different contour T beginning at 0 and ending at infinity. To see this, we
consider the space of analytic functions in the region A bounded by I" and
the positive real axis for which the integral

< (4.45)

J;qb*(z*w(z} dz

The spaces 4,4 consists of vectors [1, ¢(z)]7 and [7, rﬁf;)] with such func-
tions ¢(z). We further require that these functions ¢(z) vanish sufficiently
fast at infinity so that

fr H@)? doo = f¢*{z*)¢(z) dz (4.46)

Note that the scalar product is between a vector in ¢ and one in the dual

space 4.
Along the contour ' we can introduce a delta function §(A — z) defined

by [24.42]
J;qb(Z)é(l — 2) dz = ¢(4) (4.47)

With this definition we can reinvestigate the eigenvalue problem

Hn, §(2)]" = iln, (2)]" (4.48)

with z along the contour I'. Equation (4.48) implies

- e f otk ) ’
(4 —moln Lg (z*)@(z) dz (449)

(2 — 2)dlz) = gl2)n



UNSTABLE SYSTEMS IN GENERALIZED QUANTUM THEORY 175

The continuum ideal vectors have

__g*4")

T a(A + ie)

g*(A*)g(z)
(A — z + i€)(L + ie€) (4.50)

f gz ¥g(z) d7
zy=z2—my— | —————
r

Pa(z) = 6(4 — 2) +

z—1z

These are orthonormal; the computation follows the usual route. They are,
together with the possible discrete state,

o = [&/(m)] ™12

_ g(z)no
m—z

¢o(2)

" also complete, provided a(m) = 0 for some m < 0.
In case m, > 0, there would be no discrete state [1,, ¢o(z)]". But if the
contour T proceeds sufficiently far in the fourth quadrant, there would be a

complex zero z, for «(z) and a discrete state with

ny = [e(z)]" 12

_ 9@,
Z, —2Z

(4.51)
¢1(2)

This state is orthogonal to the continuum states in % and enters as a dis-
crete contribution to the completeness relation. Since «(z) is real analytic, if
the contour T was in the upper half plane, there would be a zero z¥ for u(z)
and a corresponding state. In both cases, the discrete state remains fixed
and contributes to the complete set of states or not according to whether T’
crosses z, (or z¥).

The demonstration of the completeness is the resolution of the identity in
the form (see Fig. 7 for the contours defined.)

f dA| D) + |mdim| m*=m<0, am) =0
1 =47 (4.52)

J‘ dAIAYCA) + |2,0¢E | olz) =0
.
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Figure 7. Contours T, T, and T for demonstrating completeness.

In doing the I" or I"” integrals we have to compute, for example,

g*(z*)g(z)
(z' — z — ie)alz’ — i€)

j PFz*)pu(2) dA = oz — 2) +

9(z)g*(z*)
(z —z' + i€)alz + i€)

: J; 7 g*(A*)g(4) dA 55

+ g*(z%)g()

—z —i€)(A — 2’ + ie)a(A + ie)u(d — i€)

The last term can be rewritten as a contour integral encasing the contour I"
because

1
g (4")g(2) = 5— {a(d) — a*(4*)} (4.54)

so that the last term becomes

(M afz) L L da
09D 55 S _[. (—2 + ie)A — z — i) (322

The poles at A =z’ — ie, z + ie cancel the third and second terms respec-
tively while the remaining contribution would be proportional to the
residue at any pole of 1/x(4). Note that it is the zeros of &(z) that count, not
the blow up of g*(z*)g(z).
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This conclusion is further demonstrated in the computation of the sur-
vival amplitude of the “unstable particle” state [1, 0]7. Quite generally,

[(1, 0), e~"41, 0)7] = jr;}i e~ dl (4.56)

(- g*@d®ed) .. 1 [ e7™dd
- _Le o) P _2ui_[;~ a7

Again only the zeros of a(l) contribute, not the singularities of g*(A*)g(4).
Any such pole of g*(A*)g(4) is counterbalanced by a corresponding pole in
o*(A*).

Here we have acted as if poles are the only singularities encountered in
the analytic continuation. But in many contexts there could be branch cuts.
We discuss such a situation for the Cascade model.

E. Yamaguchi Potential Model States

A model related closely to the Friedrichs—Lee model is the separable poten-
tial model [54] which in its lowest relevant sector has a one-dimensional
continuum. The states in # are, then, I?(0, o) functions:

{d): me(w)(p(w) do < oo}
We choose a total Hamiltonian of the form
(H¥o) = 06(0) + @) [ “W0)6@) dos @.58)
where n? = 1. Define the function

Bz)=1—n j " HleMo) fe (4.59)

o z—w'

If B(z) has a real zero, it will arise for n < 0 at z = z, < 0. In that case there
is a discrete solution:

golr) = O o -, g 15 5,0 460)

Zg — @
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There is a continuum of scattering states

nh*(h(w)

D;: i) = 64 — 0) + 0—wtiopiio (4.61)
These ideal states satisfy orthonormality
|10y =1, {4|0>=0
A2y =8(A—2)
and completeness
|00 + fdll/l}(l! =1 (4.62)

Of course, if f(z) has no zero, the discrete state | 0> would be missing from

this equation. :
The S-matrix for the ideal scattering states reduces to a phase:

S() = B(A — ie)/B(A + ie), 0<Ai< o0 (4.63)

If W) is analytic in @, so is h*(w*). Then we can continue the vector
space 3 into % and get a spectrum along another contour I' starting from
the origin and going to infinity.

The dimensionless scattering amplitude (in 5#) is given by

_ mh(w)h*(w)

= Rarig - CRLeel s ) (464

T(w)
where 0(w) = arg f(w — ie) is the phase shift. If we choose nonrelativistic
kinematics so that

o = k*/2u (4.65)

the more conventional scattering amplitude (with the dimension of a length)
is given by

_ k@) e*® sin 8(w)
ke kB(ew + i€) k
= [k cot H(w) — ik] ™! (4.66)
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which manifestly satisfies unitarity. The total (s-wave!) cross section is given
by

o(w) = g sin? B(w) (4.67)

When analytic continuations are carried out, the scattering amplitude
T(w) is continued to yield

_ wh(z)h*(z*)

= Bz +i9 ° zonI" (4.68)

T(z)

T(z) so defined may have poles due to complex zeros of f(z) or poles in
h(z)h*(z*). The latter do not correspond to extra physical states: they are
“redundant poles” (see Section IV.G). If there are no complex zeros of f(z),
the completeness relation in the analytically continued space % is

J; dz|z>{z| =1 (4.69)

The explicit expression for the ideal states |z) and the proof of the com-
pleteness and orthogonality are straightforward. In many contexts, there
could be branch cuts. We discuss such a situation for the cascade model in
Section VI.

F. Extended Spaces and Semigroup of the Time Evolution

We have so far formulated the passage from # to ¥ as a correspondence
between dense sets in # and %. With this understanding, the basis in % is
“the same” as in . Therefore, when we know that a pure exponential
decay-time dependence is not possible for states in #” (with a nonnegative
spectrum for the total Hamiltonian), the same should also obtain for corre-
sponding states in %. Furthermore, because the time evolution (and
regression) are implemented by a unitary family of linear operators realizing
the time translation group, the same would also be true of the states in %. A
pure exponential decay or a Steiltjes integral over damped exponentials
would then not be possible with states obtained by analytic continuation of
physical states.

One can, however, ask what property has to be relaxed to realize an
extended space o and its corresponding continuation % so that a semi-
group of time evolutions can be realized. These semigroups would, gener-
ally, be realized by an isometry which is not, however, unitary. After all, an
unrestricted Breit-Wigner resonance [4] with its Lorentz line shape does



180 E. C. G. SUDARSHAN, CHARLES B. CHIU, AND G. BHAMATHI

correspond to pure exponential decay (for positive time). We need to relax
the positivity of energy and define states with all possible values of energy.
In this case, we can realize semigroups of time evolution [45,46].

Let (1) be a vector in a Hilbert space #:

j WP di=1 YH=0 A<0 (4.70)

We enlarge it into H. , where W(J) is defined for negative values of A also,
in such a fashion that it is analytic in a half plane:

|~ 1
¥.i(z)= 2me; i —— Feps W(A) 4.71)
These functions are analytic in the two half planes and their sum is equal to
Y(4):
YA =Y.(4)+¥_(D) 4.72)

On ¥ (A), the time evolution for positive times is realized by a contractive
semigroup:

p)— IR R PISE S
W,z 1) =T, (¥ ,(2) = o L die ro—— W) (4.73)
Tt T(t,) = Tty + t [ e |
() Te(ty) = Tolty + ) 1 b2 @74)
T.(0=0 t<0; T,0+)=1
By the converse of a theorem of Titchmarsh [89]
¥.(7)= j Y. (De ™ di=0 +t<0 (4.75)
Then
T.0 . O=P.c+t) t>~—1 (4.76)
T.00¥.,(v)=0 t< —1 4.77)

Thus a semigroup evolution obtains on the half-plane analytic function
¥, (A). A similar conclusion obtains for the backward tracing of W _(2).

Given W (1), we can continue it to a vector W.(z) in # and the semi-
group acts in # in the same fashion.
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The functions W (z) are analytic in the half-plane by construction. They
constitute the Hardy class of functions [90] which are square integrable
along Re z for any negative imaginary part. None of this class is a physical
state (expressible as linear combinations of states of nonnegative total
energy). But many familiar unphysical states, like the Breit—Wigner function,

r 1
¥ = \/; A— Ay + /2T )
are included in this Hardy class. In addition to such a single pole we could
also have multiple poles and/or branch points. To obtain them, we can use
a perfectly physical state obtained as a linear combination of states like Eq.
(4.37), [for three-body case, see states like Egs. (6.13) and (6.14) in Section
VI] and carry out the linear maps (4.72) into the two Hardy class functions.

G. Redundant and Discrete States in the Continuum

For the model discussed in Section IV.F, when the contour I' passes
through z = M, , the continuum wave function (4.47) exhibits singularity at
z = M,, a complex eigenvalue. There is, when the contour justifies it, a
discrete eigenstate with eigenvalue M,. The scattering amplitudes also have
- singularities (poles) at the same point. People often assume that the poles of
the scattering amplitude correspond to unstable particles. It has, however,
been known [91,92] that poles appear in the S-matrix (or the scattering
amplitude) which do not correspond to discrete eigenstates of the Hamilto-
nian in #. This is true of the (repulsive) exponential potential; and a
number of phase-equivalent potentials [93,94] have been known for which
some of the S-matrix poles correspond to bound (discrete) states and others
do not. In the context of the Lee model and other such models, one could
choose the poles to be redundant or genuine without changing the
S-matrix. In the Lee model, this corresponds to the distinction between the
zeros of the denominator function a(z) and the poles of the form factor
f*(z¥)f(2). Nor are these redundant singularities restricted to being isolated
poles; for example, the S-wave Yukawa potentials give a branch cut [95],
but with no continuum of (ideal) states entering the description. In all such
cases, the redundant singularities of the S-matrix do not correspond to
states entering the complete set of states.

A similar situation obtains in the case of analytic continuation of the
vector space .# to . Consider the Lee model wave functions (4.50). They
would develop singularities not connected with the spectrum of the Hamil-
tonian in % if the form factor g(z) develops singularities. But these singu-
larities do not give any contributions to the completeness identity because
in these calculations we obtain the contour integrals involving [1/x(z)]. The
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poles in g*(z*)g(z) are matched by corresponding terms in «(z) and they
disappear from the contour integral. As the contour I smoothly deforms -
itself, it is not snagged by singularities of g*(z*)g(z). The same situation
obtains for the Cascade model; only the zeros of «z) contribute to the
discrete state and only the branch cuts in $({) contribute to the scattering
states involving an unstable particle.

A related phenomenon is that of states which contribute to the complete
set of states located in the continuum but which do not contribute any
singularity for the S-matrix [88]. This occurs when a zero of «(z) coincides
with a zero of the form factor g(z) as far as the Lee model is concerned. The
spectrum is degenerate at this point M, a(M) = 0 with a discrete state in
and an ideal state belonging to the continuum. In analytic continuation, we
can have complex zeros of a(z) where the scattering amplitude vanishes;
nevertheless, the complete set of states include these states. They also enter
the computation of survival amplitudes (4.57).

For the Lee model, we choose a form factor g*(z¥)g(z) and an «(z) such
that

M) =0;  g*z*)g(z) ~ (z — M)*G(2) (4.79)
for some complex M. Then the scattering amplitude vanishes at this point
T(z) ~ (z — M )t(z) 4.80)
The (ideal) state at this point is a “plane wave,”
H, =0; ¢.(z) = 8(z — M) + nonsingular terms (4.81)

(with no asymptotic diverging wave) which is degenerate in energy with the
proper state in ¢ with

— [w(M.)] Y2 _9@m -
ny = [w(M)]™12; $,(2) = M, —z (4.82)

In a similar manner, if the form factors in the Cascade model have zeros
along the cut beginning at the branch point u,, the scattering amplitude
vanishes at these points on the branch cut, but the (ideal) states |z in Eq.
(6.14) beginning at u, exist and contribute to the completeness (and to the
survival amplitude for the unstable 4 particle).

Thus the S-matrix singularities and the spectrum of states are not neces-
sarily in correspondence.
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Along with redundant poles, we could also have redundant branch cuts
from the “geometry of the potential.” There will be no contribution from
these to the completeness identity. Such branch cuts are familiar as the
left-hand (and the short- and circle-) cuts in partial wave-dispersion
relations.

H. Analytic Continuation of Survival Probability and
Time-Reversal Invariance

1. Analytic Continuation of Survival Probability

The probability is the absolute value squared of the amplitude, which now
involves the multiplication of two factors. One is | ¢, the inner product
between the state in % and its dual in §. Both are defined along I'. The
other factor corresponds to complex conjugations, which is the inner
product of the corresponding state in 4* and the dual state in * defined
along I'*. For the analytic continuation of a probability function, there are
two distinct pairs of vector spaces:

%4 and 9*%*

For a discrete state |M) where M =m — (i'/2), its time dependence is
characterized by

M, t) =e | M, 0) = e~ ™| M, 0) (4.83)
For the corresponding dual state in F,
(M, t] = (1 M*, 1) = eM(M, 0| (4.84)
Their inner product is
(M, t| Mty = ™M= A1 0| M, 0) = 1 (4.85)

Consider the corresponding complex conjugate space. For the discrete state
in @*,

| M*t) = e ™M™ | M*, 0) (4.86)
and the * space,

(M* 1] = <M, t] = eM(M, 0] = M (M, 0| (4.87)
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with the inner product
CM* 8| M*, 1y = (M, t | M*, 1) = 1 (4.88)

2. Time-Reversal Invariance

Decay signifies irreversibility, but it is still relevant to investigate questions
of time-reversal invariance. We recall some conventional wisdom on time
reversal. It is a “kinematic” transformation, which is independent of the
Hamiltonian or any other time evolution. Time reversal requires an anti-
linear correspondence in the primary space-state vectors. Under time
reversal,

Yz, 1) g Ury*(z*, —1) (4.89)

where U is some suitable unitary operator. When we have “in” and “out”
states, which are labeled by free particle momenta and helicities, under time
reversal the states become respectively the “out” and “in” states, the
momenta are reversed, and the helicities are unchanged. Although we do
not use it in the following discussion, we also mention that for spinning
objects, U is a rotation about the 2-axis by n:

Uy = exp(inJ,) (4.90)

For internal symmetries like SU(3) where 3 and 3 are distinct, the time
reversal can be invoked only on the density operators y' rather than on
the field operator  alone. The probabilities are sesquilinear in the ampli-
tude (or absolute value square) and are always real. The time-reversal
invariance predicts the equality between the probability and the corre-
sponding time-reversed quantity. We recall that the survival amplitude is
{M, 0| M, t). Applying the time-reversal operation, we have

T
(M*, 0| M, t5 —— (M, O] M*, —t)* = e~ ™Mi(M* 0| M, 0> = e~ M0
— 0 e T
(M, 0| M, t> = e™™MI(M, 0| M, 0> ——> (e~ ™M OV (M, 0| M*, 0> = e~ ™Mt
o P T
(M, 0| M, £)* = e* M M* Q| M*, 0) ——s e*iM™ 4.91)

Thus, the corresponding dependence of the time-reversed probability is
given by

T

I<KM*, 0| M, t5]> — [<M, 0| M*, —t)[*=e™" (4.92)
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So that the survival amplitude involves the inner product of the state
M, t> in 4 with its dual state, (M, 0| = (M*, 0| in &, which leads to
exponential decay. Also, for the complex conjugation of the inner product
between 4* and %* states, it again leads to an exponential decay.

L. Two Choices for Unstable Particle States

In our study of generalized quantum-state spaces, we have given an exposi-
tion of analytic continuation of state spaces, and the corespondence
between dense sets of states in # and %. For analytic Hamiltonians, the
spectrum can be “analytically continued” in %. The resolution of unity
embodied in the completeness identity has alternate expressions. Inciden-
tally, this is an example of reducible representations of the (time) translation
group having different decompositions in which no component of one
decomposition is equivalent to any component of the other. The notions of
discrete states, continuous spectra, “in” and “out” states, and exact expres-
sions for the (ideal) states all obtain for these generalized spaces.

One could take either of two views about what is an unstable particle.
One is that it is a physical state of the system which is normalizable and
which ceases to exist as a discrete eigenstate of the total Hamiltonian. If | M)
denotes this normalized state, the survival amplitude is

At) = (M| e | M) = J.dj. e MM | YA M) (4.93)

Here A is integrated along the positive real axis. This amplitude cannot ever
be strictly exponential in t and is bounded in absolute value by unity for all
t, positive or negative. It exhibits a Khalfin regime where it has an inverse
power dependence and a Zeno regime where the departure of its absolute
value from unity is quadratic in ¢. But for much of the intermediate region
it is approximately exponential in |f|. One of the drawbacks of this picture
of an unstable particle is that its survival amplitude does not furnish a
representation of the time-translation group or semigroup. The unstable
particle so defined is not “autonomous,” it ages.

The other picture of the unstable particle is as a discrete state in the
generalized space % and as such has a pure exponential dependence. The
time evolutions form a semigroup (for ¢ > 0) with the absolute value stead-
ily decreasing exponentially. Such a state cannot have a counterpart physi-
cal state in #. For negative values of ¢, the state tends to blow up. If we
start from any state in 2 which can be continued into %, the result so
obtained would never be a pure discrete decaying state, but that plus rem-
nants of a continuum. We could extend # to > by relaxing the spectral
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condition H > 0 and obtain a state in H, as in Eq. (4.72); then we could
obtain a semigroup evolution law (4.76, 4.77). We have also seen that both
the time evolution of the decay process and that of the time-reversed
process exhibit exponential decay. Although this choice appears to be
elegant, it is deduced at the expense of giving up the lower boundedness of
the energy spectrum. We consider it to be the less desirable choice.

Finally, we observe that the spaces # and % that we have used are
distinct spaces though there is one-to-one correspondence between dense
sets of analytic vectors in »# and %. This correspondence can be imple-
mented by an intertwining operator V:# — % with its inverse
V~1:% - # given by the formal Steiltjes integral:

V(z, x) = j do Y (2WE(x)

. e 4.94
Viz, x) = jda YalXP2(z*) = Ida Y ((2) @

where {Y,(x)} is an analytic basis in # and {y,(2)} its counterpart in %.
Any analytic operator, including the Hamiltonian in 5, has the counter-

part in % defined by

A VAV~ (4.95)

These operators V, V! are intertwining between the spaces # and %.

Two further remarks are in order. First, we can choose to concentrate on
the eigenvalue equation being reduced to an equation for the unstable state
alone by using one half of the equations to eliminate the daughter product
amplitude. For the Fredrichs—Lee model,

T — = * N de'
(A — Moo J; fHome) do 4.96)

(A — om(w) = fla),

For the discrete state, the second equation can be used to solve for x(w) in
terms of #,:

o)=Ly i<0 (497)
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Then
f¥@) f(o) do' ) 4.98)

A__wr a

(A—Mohn, = J.

This is a nonstandard eigenvalue equation because the right-hand side is
dependent on the eigenvalue. The solution is obtained by seeking the zeros
of the function

A—ao

az) =z —my — J;m M (4.99)

Note that the normalization of the state includes the continuum states also,
so that instead of | 5| = 1 we must choose

10| = (M)~ (4.100)

If the subspace for which the solution is attempted is not one-dimensional,
we would have a nonstandard matrix eigenvalue problem:

Ay = i = FQW (4.101)

Such a situation obtains for the Kaon decay complex. The generic theory of
such reduced nonstandard eigenvalue problem is due to Livsic [96,97].

The second remark contains improper models we have seen that the
survival amplitude

A@R) = 1Y) (4.102)

can be expressed as a spectral integral
J- [ () Pe™ di (4.103)
0

with an absolute value no greater than unity. It is tempting to introduce an
effective nonself-adjoint Hamiltonian K with the property

e” Ty = AWy (4.104)

Since for a large class of dynamical models there is an extended region for
which A(t) is well approximated by a complex exponential

A(f) e E—iEoi—(lﬂ)l‘: (4105J
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one could consider
K=E, _% T (4.106)

as the effective Hamiltonian. This would be very similar to the Livsic oper-
ator F(A) mentioned above. But if K is really thought of as describing the
decaying system, we get into inconsistencies: to begin with we get complex
eigenvalues before analytic continuations. Such complex poles (“in the
physical sheet”) violate general principles like causality. As pointed out by
Peierls, the complex poles must be obtained only by analytic continuation.
We see this in the Livsic decomposition, the function «(z) with a cut along
the real axis has no complex pole, only its continuation has a pole. Lack of
care in discussing this question leads to misleading statements even in
current literature.

Y. GENERALIZED MULTILEVEL QUANTUM SYSTEM

In Section VI we discussed the analytic continuation in the context of one
level quantum system. In this section we apply the same approach to the
multilevel and multichannel quantum system. In particle physics the neutral
Kaon is the most familiar and a simple example of such a system. There-
fore, in this section we also devote most of our attention to the neutral
Kaon system. The wave functions we will be looking at, as in Section III,
take on the general form labeled by running indices, so that it can readily
_ be adapted to the multilevel, multichannel situation.

We saw in Section III that the Lee-Oehme-Yang (LOY) model makes
use of the Breit-Wigner approximation as applied to the neutral Kaon
system. In Section III, we also saw that within the LOY model, the K; and
K wave functions are superpositions of K° and K°, with

¥, = N(p), ¥, — N( p) (5.1)
q —q

Should one define the corresponding bra states to be the hermitian con-
jugate of the ket state, that is, (K, | = | K,>', one would arrive at

(Ks|Ks) = (K |Kp>=N*p|* +1q*) (5:2)
and

(Ks|Kpy=N*pl* —1ql*) (5.3)
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One might ask why, if Kg and K are distinct eigenstates of the Hamilto-
nian, are the two states not “orthogonal,” that is, (K¢ |K;> = 07?

The answer is that the wave functions here are eigenfunctions of an effec-
tive Hamiltonian, namely, the operator “K” defined in Eq. (3.48). Although
the total Hamiltonian of Eq. (3.19) is hermitian, the operator K is not; K is
a 2 x 2 nonhermitian matrix. So the y;, and Y, given above are eigen-
functions with complex eigenvalues. The operation of complex conjugation
takes the state with eigenvalue M into another state with the complex con-
jugated eigenvalue M*. Thus, for a complex value of M, the product

(Ks|Kp> (5.4)

is an ill-defined product. This is not an inner product! This difficulty was
recognized soon after the proposal of the LOY model. The resolution was
found through working with the left eigenstates or the dual states. We
denote the dual states by (K| and (K, |. Here the orthogonality relations
should hold:

<KSIKL> =0, <KL|KS> =0
and we may choose
(Rs|Ksy =<K |Kp>=1 (5.5)

The notion of left eigenstates is well known. In the context of the neutral
Kaon system, it was explained in detail by Sachs [70] over three decades
ago. In his paper, Sachs worked in the same approximation as in the LOY
model, where the K; and Kj states are assumed to be the superposition of
K° and K° The continuum component of the wave functions is being
neglected. In the theory presented in Section III, the continuum channel
contribution is included explicitly. As we shall see, the inclusion of this
piece leads to the exact orthogonality relation.

Our discussions in the remainder of this section are divided into four
parts. In the first part, we recall the conventional solution of the theory as
presented in Section III. In the second part, we demonstrate how the exact
orthogonality relation alluded to above is obtained and show that when the
continuum contribution is suppressed, it gives an approximate orthog-
onality relation. In the third part, we present the completeness and orthog-
onality properties of the analytically continued wave functions, which
display the generalized spectrum of discrete states with complex eigenvalues
together with the continuum states defined along a complex contour. In the
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last p.art, based on the analytically continued theory, we present a deriva-

tion of the refined version of the Bell-Steinberger relation [56].

A. Solution of Present Multilevel Model

In Section ITI, we saw that the continuum eigenfunctions take the form

where

and

where

a;
Vi= [b;(w)]

g'(@)a;

bi(w) = 8(A — ) + O

Ka,=g with K= —m— G(A)

|
e

B '[ ® e J@'@)
o A—w +ie

If the discrete solution occurs at A = M,

Q‘(w}ﬂy

bM=M-w+ie

where a,, satisfies the equation at L = M

Ka, =0 or [m+ G(i)]a, = 4aq;

Kay = K(M)ay = (m + G(M)ay, = May,

(5.6)

(.7)

(5.8)

(5.9)

(5.10)

(5.11)

If we identify K; and Kg to be the second-sheet poles, we can define the
unitarity cut in such a manner as to expose these poles (see Fig. 8). The
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Mc

r

Figure 8. The contour I" and the exposed pole at M, .

corresponding analytically continued wave function is given by

Cia
v, = ( qa) =Ng| _gp{0)c; (5.12)
P M, — o+ ie

where +ie serves as a reminder that the second sheet is now partially
exposed and M, is above the I'-cut. The corresponding dual wave function
of the discrete state at A = M is given by

g g,
¢ﬂ = (Ig, C,s) = Np(dgk, m) (5.13)
Here again, M, is above the I'-cut.
B. The Inner Product (M;|M,)

We denote the discrete eigenstate by K; and K. Similar to the approach of
Section III.A, we have

L = NL(‘UL) and cg= Ns( P S) (5.14)
qr. —ds

except that p and ¢ now depend on A, which are evaluated at A = M, and
M. The N’s are the normalization factors yet to be determined.
For the dual wave function, we proceed to solve for d; = (r, s) based on

(r, s»(’éf ﬁ ‘) = Ar, s) (5.15)
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Taking the transpose we have

A, Ci\(r T
(B,t A;)(S)_i(s) (5.16)

Comparison with Eq. (3.48) reveals that, analogously to Eq. (3.50), it can be

shown that
2 :
- T S (5.17)
5 B, s T\ B,

In other words, for the K; and K dual states,

=

dp=Nyqy, pr),  ds = Ns(—ds, ps) (5.18)

1. Orthonormality Relations

The inner product of a discrete state labeled by a with another dual discrete
state {f |, = {B*|, is given by

L Cha
di:a:
<B* | a> = Na Jvﬂ[dﬂk, E’ﬁJTQ}C;_('?;} gﬂj{m)cjﬂ
: 4 M, — w+ie
e N N : é’kp(w)gpj{m) ‘
xivp dﬂk[ékj + L dw (Mﬂ — M, — ) C e (5.19)

The discontinuity of K across the I'-cut can be read off from Eq. (5.11), and
is found to be

K(A + i€) — K(A — ie) = 2mig(A)g(A) (5.20)

Thus, the integral in Eq. (5.19) can be deformed in the following manner:
(see Fig. 9)

J‘ dw Gilw)g,fw) -+ = 21k dw [K,q-{cu + ie) — Ko —ig)] -+

—1

= k dw K {w) - - (5.21)
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Figure 9. Relationship between C_, and those counterclockwise contours enclosed by C, .

where, as indicated in Fig. 9 the contour C wraps around the I'-cut in a
counterclockwise manner. The equations for the discrete solutions are

Ki{MJe, =0 at 1= M,

5.22
dg K, AMp) =0 at 2= M, 62
Inspection of the contours in Fig. 9 reveals
C,=C,+C+C (5.23)
The corresponding integrals are related by
. —d, dw K(w)c
j pR = th I = —2 = .24
eemlelplle e .[;(Mg—»w)(Ma—m) (o4

Consider first the case f # a. On account of Eq. (5.22),

—1 dw
I, = Sk J; M, —oyM. — ) dg K(w)c, =0 (5.25)
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Similarly,
I,=0 (5.26)

From Eq. (3.31), the asymptotic behavior of K(w) is

1 dw
{Iao),ﬂa = = m J;Q M, — oM, — o) dﬂk(wékj)cja
= “‘“dﬁk 6&; Cku {528)

Substituting Eqgs. (5.25), (5.26), and (5.28) into Eq. (5.24), using the definition
in Eq. (5.21), the inner product (5.19) becomes

(M} |M,> = N,Ngdg[8;+(—0~0~3lc;;=0 (5.29)

For the case f = «,

_ Grg(@)gg{w) dw
<M:!Ma>=l_Niduk[5kj+j k(Ma—-co)z Caj
= N2d,Ki;c (5.30)

with

o [dK
= '[dALM,

Thus the normalization is given by

N, =[d,K'¢]™1? (5.31)

2. The “Querlap Function”

The contribution to the overlap function from the discrete ¥’ compenents
alone (i.e., ¥, and ¥, components) or the K° and K° alone, is given by

(B*|ady = X KME| VX XViIM) = Ny N, dgc, (5.32)
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For « = K; and § = K;, using Eq. (5.18), the right-hand side of Eq. (5.32)
becomes

{S*|L)y = NsNy(—gs Ps)(z L)

L

= NsNy(psqL — qspL) (5.33)

Strictly speaking, since (p;, q;) and (pg, qs) are evaluated at M, and Mg,
RHS # 0. However, to the extent that the energy dependence of the coup-
ling function g(w) in the analytically continued Hamiltonian can be
neglected, p; & ps, gy ~ gs, or RHS =~ 0.

This approximate result was discussed for instance in the work of Sachs
[70]. Our contribution in this section is the demonstration of the exact
orthogonality relation between the state o and its dual state f. More specifi-
cally, when the form-factor effect is taken into account, even though the
discrete part alone (5.33) no longer vanishes, with the inclusion of the con-
tinuum contribution, the orthogonality relation holds exactly.

C. Continued Wave Functions and Continued Spectrum

Thus far we have looked at the discrete solutions in the analytically contin-
ued theory with the continuum states defined along the contour I'". Here-
after, we refer to it as the “I"-theory.” The continuum states and the dual
states are defined along the same contour I. We proceed to display the
complete set of wave functions, including both the discrete states and the
continuum states, and to investigate their orthonormality properties and
completeness relations. Some of the calculations were given in Section V.B,
and the remainder can be found in Appendices A-C of reference 55.

1. Complete Set of Wave Functions

1. Discrete States. From Egs. (5.12) and (5.13), the wave functions of the
discrete states and corresponding dual wave functions are given by

_{ Wlw )_(rr,) Cha
po=( - - _
: (<N8p|a> bp) ~ | d2f 2 (5.34)

@, = ({B* |V, B*INOY) = (s> sp)

= Nn[dm, Ay Jipl) “’}] (5.35)

M, —o
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2. Continuum States. From Egs. (5.6) and (5.7), the continuum wave func-
tions and their dual wave functions are given by

r— <EEH"> — [ Mka
= (<Nep|ﬁ.r>) - (46;-;)
r

%a o (5.36)
" | 80— @3, + 57

@, = (CA*r| VD, CA*r|NBD) = (ais (o))

_la o5 4 1) :
_a,u,,é(l o) t (5.37)
From Eq. (5.8),
Ka=§ a=K"'§, da=gK ! (5.38)

2. Orthonormality Relations

The identity operator in the bare basis is
1=Vl + _[ dw | N8 () )(NO(@*)| (5.39)

where summations over k and p are understood. The expected orthonor-
mality relations are

B* ey = B*|VoVila) + _[_dW@*INﬂp)(f\?épl@

™

= XpiMea + 'rdw Lap(@)ehpal@) = O, (5.40)

(A%, 1|0 = YonPlha + ;dw Capl@)dpy(@) = 0 (5.41)
B* 14, 1> = Xputha + :dw (ol @)Phi@) = 0 (5.42)
A% rlp ) = Lot + Pfiw Gy (w) = 6 — wo,,  (543)

The proof of Eq. (5.40) is given in the previous section [see Egs. (5.29) and
(5.30)]. The remaining relations are proved in Appendix A of reference 55.
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3. The Completeness Relations

The spectrum in the analytic continued theory consists of the discrete states
K; and K at the complex energies M and Mg, respectively. This defines a
space %, where the identity operator is given by

= |ad>{a*| + Ldilb)(l*rl (5.44)

Again, summation over the discrete labels o and r is understood. The iden-
tity operator leads to following set of completeness relations:

ViV = M Ay + -[;d). M 25 = Oj (5.45)
(NB,IV) = pudas + L‘” Gpadax =0 (5.46)
SARCHES e J‘di Malag=0 (547)

r

(NB(@) | NOS@)) = ppuleg + J.rdl Gpilsg =00 — @), (549)

The proofs of these relations are given in Appendices B and C of reference
55.

D. Derivation of the Bell-Steinberger Relation

The Bell-Steinberger relation [56] is usually associated with the unitarity
relation. It is instructive to see how the corresponding relation arises within
the present framework. We recall that the equation of the discrete solution

is given by [see Eq. (5.11)]
Kiia; =0 (5.49)
where
Kij(A) = A6; — ExfA) — my; (5.50)

With analytic continuation one gets

E\f{4) = j 8igl0")g,/©) (5.51)

—&)+IE
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We deform the unitarity cut running along the positive real axis to the
contour I' such that it “exposes” the discrete-state solution (see Fig. 9). In
terms of the E-function, the discrete solution at 4 = M is given by

[me; + EyfA)]a; = M,a, (5.52)

Taking the hermitian conjugate for the discrete solution at 4 = M gives

aj[m* + E*()] = M}a; (5.53)
But
CEM,)]* L aw 2 “" L) poa (5.54)
where
(g7 (@*)g(@)]™ = g™ (w)g(w*) = g™ (0*)g(e) (5.55)

and @' = w* were used.

We assume each Yukawa coupling function in the Hamiltonian can be
characterized by a coupling constant g,, and a cutoff L,. To evaluate
E(z + ie), when there is one discrete solution in the lower half plane, we
choose the contour I' such that it barely misses the point z. The principal
value part

B0 dw Le dw
&%t _— i
P[E(Z)]—ggmgpk[.l; z_w+f€+_[,+‘,z-—a)+fe]

z L
-SoiafnZ-nk]

z
= Z gﬁ,gﬂk In Z- (5.56)
P P
Using the identity
1 1 _ .
—=P Find(z — o) (5.57)
Z—wt i€ Zz—@ )

Ez+i=Y g}, 1n(Li e“") (5.58)
P P
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Assuming the bare mass matrix (m,;) is hermitian, Egs. (5.52) and (5.53) lead
to

ag[E(M§) — E.{M))]a;, = (M7 — M«)“Ez ia

: M3* X
. z {a; id j;xgpk ah)[zm +In ﬂ_tfﬁ:l (5.59)
P

a

The last equality is a refined version of the Bell-Steinberger relation which

was deduced using the present theory.
For the Kaon system, both the mass and the width differences between

K, and K are small compared to the mean Kaon mass, that is,

L S
Mi =M, oy (5.60)
M,
or
* My —M
ln(ﬁ—)}i ez“‘) ~ 2mi + —W x 2mi (3.61)
Denote

“Blay” = ﬂ;k Ayy
75 = Gpk Qe (5.62)
Yo = agdip

Equation (5.59) in the approximation of Eq. (5.61) is reduced to the original
form of the Bell-Steinberger relation:

“CBlay”(Mf — M) =2mi . v, "7, (5.63)

E. Summary

We have presented a theory for the neutral Kaon system based on the
extended Lee model. The spectrum of the theory consists of the discrete
states on the second sheet, which are the K; and K states and the contin-
uum states defined along a contour I'. The spectrum spans the space 4. The
bra states here are dual states of the ket states. For the discrete states, both
the bra and ket states are at A = M. For the continuum states, if the ket
state is defined at A + ie along the upper lip of the contour T, the bra state
is at A — ie along the lower lip of T
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Our analysis indicates that the nonvanishing of the “(K; | Ks>” in LOY
theory is related to the fact that the quantity does not correspond to a
properly defined amplitude. If the properly defined amplitude corresponds
to the inner product between a state in the % space and a dual state in the
@ space, (K¥| Ks) is expected to vanish. As we see in Section V.B.1, it does.

Finally, based on our present theory, we derived a refined version of the
Bell-Steinberger relation. The refinement differs from the original relation
in the order of O[(M} — M )/Mg]. Although this difference is insignificant
for the neutral Kaon, D°D° B°B° systems, it still remains a challenge to
look for quantum systems in nature where such correction does lead to a
detectable effect.

V1. THE CASCADE MODEL

Up to this point, we confined our attention to two-body channels. In either
the one-level system of Section IV or the multilevel system of Section V, the
second-sheet singularities are simple poles. In this section we look at the
quantum system which admits the decay into three-body channels. Here, in
addition to second-sheet poles, there may also be second-sheet branch cuts.
We consider a simple three-body model, namely, the cascade model, which
is an exactly solvable model [44].

A. The Model

We consider a Hamiltonian system [44] where there are three classes of
states for the unperturbed Hamiltonian; a particle A with bare energy M;
a two-particle continuum with energy p, + @, 0 <@ < 00; and a three-
« particle continuum with energy w + v, 0 < w, v < coc. We denote the ampli-
tudes for these by #, ¢(w), and Y(w, v) and the scalar product is given by

ninz + '[ P1(@)¢;(w) dow + f Jlﬂ(w, W, v) do dv < (6.1)
: 0 0

The vector space # of states is the completion of this vector space. The
total Hamiltonian and eigenvalue equation are given by

M, ¥ 0
f@) (o + w)o(w — ) g*(V)o(w — o)
0 ' gwdw— o) (@ + v)d(w — @)o(v — V)
P} M
x| ¢i@) |=4 ¢iw) | (6.2)
Y (@) W i(wv)
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B. The Eigenstates

The energy eigenvalues are degenerate and infinitely degenerate once the
three-particle channel becomes open. We can enumerate the (ideal) eigen-
states of Eq. (6.2) in the following form:

| S*A—n) g*n)
w(d + ie p(n+ i€)

"}\n *
_ _ FOH—w—n) _ f(@M
S f;}(::j) B YA — o + i€) YA — o + i€) =
v
(‘I{v—n)é(ﬂ.—m—?i}-f-; _wg(_)H % P 1)
where 0 < n < 4 < oo, and
® [Hw)f(@)
mE)ia =My Wz — @ + i€)
= g*(v)g(v) (6.4)
y(z}——z—,uo—J; z——v+iedv
If there is a real value u such that
oy(z
) =0; = —;( ) (6.5)
z=p
there exists a two-particle, one-parameter family:
e JHr—n) =
\/']70:(: + i€)
Me
1 S(@)
=] 0¢d®) |=| —=dr—p—0)+———1, (6.6)
i) \/.)7 ©—n ) Wt — o + i)
g(v)
- t—m—v+:’€¢'(w) |
Note that 4 and t vary over ranges differing by u so that
0<A, (t—p <o
If there is a real value M such that
GOl gt (6.7)

az z=M
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then there exists a discrete state

_ 1 }
Nan _E f(w)
=l du@) | “ | M-w 2
Vadam) g/ ()
| 5 — oM — o —) |

C. Orthonormality Relations

These states are (ideal) normalized. By a straightforward calculation, they
can be shown to be mutually orthogonal. We can also show them to be
complete. The best way is to compute || do' dv' Y*(@'v)¥(w'v) and convert
it into a contour integral. If there are zeros of y(z) they will compensate the
one-parameter continuum and so on, and we may obtain

MIM>=1, (M|z)=0, <(M|in)=0
()t =6(t — 1), {t'|Any> =0 (6.9)
{An'|An) = 8(A — A)d(n — n')

and

ﬂlﬁaﬂ(ﬂfvw};(wv} di dn + f&:(w'V')wf(wv) dr
+ Yo(@ VW (o) = (@ — &)y — V)
J-J. Yinl@V)PT(w) di dn + J"J'!‘(w’\")tb?(w} d1 + ¢o(@V)e5(@) = 0

J.J' VoVt dA dn + J\W;(w’v’)q;" dt + Yol@viE =0  (6.10)
J‘J‘ Din(@)PI @) dA dn + J‘«bz(w')tﬁ?‘(wJ dt + ¢o(0)3(@) = de’ — w)

0

I

J].%.(w’)ﬂi‘.. di dn + J‘tﬁr{w'}fﬁ" dt + po(@ng

ﬂmmr. di dn + J‘n,n? dt +nomg =1
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D. Continuation of Scattering Amplitudes and Unitarity Relations

To study analytic continuation [55] with complex branch cuts, we choose
M, and y, sufficiently positive so that there is no real zero for y(z) or a(z).
Then the only states in 3 which are (ideal) eigenstates are |An) and these
are complete in the sense of Eq. (6.10). The S-matrix elements are

(An, out| A'n’, in) = 8(A — X') - {8(n — n') + 2iT(n, n'; A)} (6.11)

g*mgln)
R on n)} (6.12)

T(n,n'; 2) = —ﬂ{a(:‘» + 1€) 30 Naw +
Both the S- and T-matrix elements considered as a function of A can be
viewed as analytic functions of (complex) energy z with a branch cut
0 < z < 0. Because by hypotheses y({) has no real zero, we would find a
complex zero at yu, in the lower half plane as we deform the branch cut
from that along the positive real axis to the appropriate contour in the
fourth quadrant. This pole induces a branch cut in T'(n, n'; 1) from p, to
infinity along a contour of our choice. So we can have, as illustrated in Fig.
10, the choice of the contours I'y, I', + I';, or I'3 + I'5 + I';. For I', + T,
we have the complex branch cut beginning at u,. For T's + Ty + T}, we
have the complex branch cut beginning at z, and the pole at M.

These analytic properties signal the possibility of analytic continuation
of the space »# into %. For the contour I';, we get the complete set of states
|z, {>:

( T -0 \
«(z + iey({ + ie)
g*(*)éz—{—9) Q) - [*z* — {F)g*((*)

Wz — & +ie) oz + i€)p(l + ie)p(z — & + i)
|2, (> = < %(6.13)

g(v)
5(C—v)5(2-§~v}+z_§_v+ie

[g*{c*)a(z —{—9 SO *(z* — *)g*(®) ]
Wz — & + ie) oz + iepy({ + ie)y(z — & + ie) |

~

where z lies on the contour I'; and we may choose & + v, {, and v also to lie
on this contour. By a lengthy but straightforward calculation using the con-
version of open contour integrals into closed contour integrals, we can
show that Eq. (6.13) constitutes a complete (ideal) orthonormal system.
Neither the zeros of « nor of y are in the complex plane cut along I'; and,
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Figure 10, Spectra and contours for the cascade model with M, » p, > 0.

consequently, the closed-contour integrals do not enclose any of the related
singularities.

If we choose the contour I',, we have crossed the branch point at y,.
This branch point “snags” the closed contour over which we integrate and
completeness is restored only by including the generalized (ideal) states
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3 O — ) 9
ey + ie)

1 1) A e 20
— 8y — py — _—
17> =9 Y M V7ol + ie) (

g(v) 1 Ji) f*(y*—ul)]
My — u, —
ky—af—v+fe[\/?; M N
(6.14)
with
. _ )
1= "0 - (6.15)

Here y and & + p, are along I, and ¢ lies on I';, which is obtained from I',
by displacing it by the fixed complex number '. The states | y> and |z, {> in
Egs. (6.14) and (6.13) now form a complete set. The contour I') is the spec-
trum of the “unstable” particle B (which has now become a “stable parti-
cle™!), scattering a 6 particle with energy &. In addition to the generalized
unitarity relation along I';, this scattering also obeys

TC U5 2)— T, I 2%) = J' dy" TH(E™, [*; 2T, ' 2)  (6.16)

T2
the unitarity relation
T(Q) — T*(&*) = T*(EMT() (6.17)

along T",. There is a technical point here. For the definition of the contin-
ued wave functions, the contour I'; is chosen through the “parallel-
transport” prescription stated above. However, for the continued unitarity
relation, it can be shown that it is no longer necessary to be confined to the

parallel transported contour T .

In the context of the continuation of wave functions, further deformation
of the contour does alter the states |7>. When z and ¢ + { are along the
contour I'y, 7 is along I'y = I'3 + u, (see Fig. 10). It could also uncover the
discrete state | M, ) with
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[~ 1

- L 6.18
M= -9 1
o)1

| Y, — &M, —E—) |

which then needs to be included in the completeness relation.
Unitarity relations for the T-matrix are energy-local relations [98] and
as such do not mix the unstable- and stable-particle scattering.

VII. SUMMARY AND CONCLUSIONS

Let us recapitulate some of the points considered in this chapter. The Breit-
Wigner approximation has been the phenomenological framework for the
description of unstable states and it predicts a pure exponential decay.
There are several shortcomings to this approach. The resonance is associ-
ated with a pair of complex conjugate poles on the physical sheet; this
violates “causality.” Viewing the Breit-Wigner model as a continuous spec-
trum violates the semiboundedness condition, which, in turn, leads to the
violation of the second law of thermodynamics. Thus it is necessary to
describe unstable quantum systems by going beyond the Breit-Wigner
approximation, not only for minor technical corrections but for a concep-
tually satisfactory formulation.

Our discussions have been divided into two parts. In the first part, we
see that insisting on the semiboundness of the spectrum cause the time
evolution of an unstable quantum system to deviate from strict exponential
decay both in the very small and the very large time region. In the neutral
Kaon-type system in the very small and large ¢ regions, there is a regener-
ation effect between K; and Kj states.

From the study of solvable models, we saw that departure from expo-
nential law, with the present experimental limits of time resolution, is
numericaly insignificant. Nevertheless, we find it useful for the sake of con-
ceptual clarity to pursue a comnsistent generalized quantum mechanical
framework for the description of unstable states. The predictions of this
framework coincide with the Breit-Wigner approximation in the bulk of
the exponential decay region and at the same time allow extension to the
very small and very large time regions. This is analogous to the formulation
of the relativistic theory in the nonrelativistic domain, which allows for
natural extrapolation to the relativistic domain.

With this in mind, by means of analytic continuation, we identify an
unstable particle state as a discrete state in the generalized space ¥ with
complex energy eigenvalue. Here the continuum states are defined along
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some complex contour and the inner product and transition amplitudes are
defined between states in % and its dual state in the corresponding dual
space G.

The Breit—Wigner approximation [4] was introduced in the 1930s. A
systematic and rigorous approach began with the paper by Sudarshan,
Chiu, and Gorini [42], which proposed the notion of generalized quantum
states leading to a consistent treatment of an unstable quantum particle as
a complex eigenvalue solution of the operator in ¥ associated with a hermi-
tian Hamiltonian in #. The analytic continuation of this program was
carried out for various models, demonstrating that this approach can
indeed be implemented consistently in various models. Within this frame-
work, a resonance pole is a bona fide eigenstate of the continuation of a
hermitian Hamiltonian with complex energy eigenvalues. We have applied
the same generalized framework to scattering problems. The analytically
continued scattering amplitudes and the extended unitarity relations were
presented. The generalized framework provides the essential ingredient
needed for a consistent description of the scattering process involving
resonances.

The present formalism of dual space differs from the rigged Hilbert space
theory, which also deals with dual spaces. But the dual spaces are the
. primary entities here. Some earlier papers in the literature claiming time
asymmetry obtained their results by introducing unphysical states with
energies unbounded from below.

The present approach is in one sense the completion of Heisenberg’s
program to make dynamics out of directly measured quantities like spectral
frequencies and intensities augmented by resonance positions and widths;
and in another sense a further generalization of the Dirac formalism of
quantum theory in terms of ket and bra vectors. It is instructive that these
old ideas contain the germs of many modern developments [45].
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