Toward an understanding of the spin-statistics theorem

lan Duck
1. W. Bonner Laboratory, Physics Department, Rice University, Houston, Texas 77251-1 892

E. C. G. Sudarshan
Center far Theoretical Physics, Department of Physics, University of Texas, Austin, Texas 78712

(Received 6 February 1997; accepted 2 December 1997)

We respond to a recent request from Neuenschwander for an elementary proof of the Spin-Statistics
Theorem. First, we present a pedagogical discussion of the results for the spin-0 Klein—Gordon field
quantized according to Bose-Einstein statistics; and for the spin-3 Dirac field quantized according
to Fermi-Dirac statistics and the Pauli Exclusion Principle. This discussion is intended to make our
paper accessible to students familiar with the matrix solution of the quantum harmonic oscillator.
Next, we discuss a number of candidate intuitive proofs and conclude that none of them pass muster.
The reasons for their shortcomings are fully discussed. Then we discuss an argument, orjginally
suggested by Sudarshan, which proves the theorem with a minimal set of requirements. Although
we use Lorentz invariance in a specific and limited part of the argument, we do not need the full
complexity of relativistic quantum field theory. Motivated by our particular use of Lorentz
invariance, if we are permitted to elevate the conclusion of flavor symmetry (which we explain in
the text) to the status of a postulate, one could recast our proof without any explicit relativistic
assumptions, and thus make it applicable even in the nonrelativistic context. Such an argument,
presented in the text, sheds some light on why it is that the ordinary Schrodinger field, considered
strictly in the nonrelativistic context, seems to be quantizable with either statistics. Finally, an
argument starting with ordinary-number valued (commuting), and with Grassmann-valued
(anticommuting), oscillators shows in a natural way that these must relativistically embed into
Klein—-Gordon spin-0 and Dirac spin-1 fields, respectively. In this way, the Spin-Statistics Theorem
is understood at the expense of admitting the existence of the simplest Grassmann-valued field.
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PART A. INTRODUCTION

This paper is our response to a question raised by Neuen-
schwander in the ‘‘Questions and Answers’” section of The
American Journal of Physics,' whom we quote:

“In the Feynman Lectures on Physics, Richard
Feynman said: ‘Why is it that particles with half-
integral spin are Fermi particles whose ampli-
tudes add with the minus sign, whereas particles
with integral spin are Bose particles whose am-
plitudes add with the positive sign? We apolo-
gize for the fact that we cannot give you an el-
ementary explanation. An explanation has been
worked out by Pauli from complicated argu-
ments of quantum field theory and relativity. He
has shown that the two must necessarily go to-
gether, but we have not been able to find a way
of reproducing his arguments on an elementary
level.... This probably means that we do not
have a complete understanding of the fundamen- -
tal principle involved... .’

Has anyone made any progress toward an ‘el-
ementary’ argument for the Spin-Statistics Theo-
rem?"’

Within months a few responses appeared, none of which
we find to be credible.

Neuenschwander’s quest:on made us realize that we too
did not ‘‘really understand' the original Pauli proof,? and
did not understand the too terse comments on the subject that
one finds in all textbooks on quantum mechanics and field
theory, especially in the book on the subject by R. F. Streater
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and A. S. Wightman.? Pauli’s proof and Streater and Wight-
man’s explanation and expansion of"it, are perhaps examples
of just the inaccessible formal arguments which Feynman
was apologizing for, and which prompted Neuenschwander’s
dissatisfaction in the first place.

We present the following.

(1) In Part A, we present a pedagogic review of the quan-
tization of the spin-3 Dirac equation according to Fermi-
Dirac statistics and of the spin-0 Klein—Gordon equation ac-
cording to Bose—Einstein statistics. Following this, we
briefly describe important and exciting experimental
searches for violations of, for example, the Pauli Exclusion
Principle, and theoretical efforts to interpret such violations.

(2) In Part B, a detailed refutation of four heuristic proofs
put forward in response to Neuenschwander’s question is
presented. We are in full accord with a brief criticism already
published by Hilborn.*

(3) In Part C, a simple proof of the Spin- Statlstlcs Theo-
rem based on work by Schwinger is presented.>® The proof
makes use of a convenient but rather unfamiliar formulation
of quantum theories which uses second-quantized Hermitian
fields rather than the usual complex Schrodinger wave func-
tions. It also uses a Lagrangian formalism with the kinematic
part of the Lagrangian bilinear in these fields and, at most,
linear in their first derivatives. The proof is based on Sudar-
shan’s observation that rotational invariance, in conjunction
with the postulate of flavor symmetry (pcrhaps as a vesuge
of Lorentz invariance) of the Lagrangian requires the spin-
statistics connection. The flavor symmetry is necessary to
prevent a free antisymmetrization on internal degrees of free-
dom (for example, isospin), which could reverse our conclu-

© 1998 American Association of Physics Teachers 284



sions. We will find that flavor symmelry is necessary to sat-
isfy certain elementary requirements of relativistic quantum
field theory but seems to have no independent motivation,
We spend considerable effort rationalizing Sudarshan’s re-
sult, because in this formalism chosen by Schwinger to make
the spin-statistics connection transparent, many other things
become quite complicated. We describe the situation in some
detail. We hope the reader will not be intimidated, and will
accept our assurances that the theory, although cumbersome,
is truly elementary. All the manipulations involved are famil-
iar from elementary quantum mechanics and classical La-
grangian mechanics. One exception to this claim is the fact
that we have used the formalism of second-quantized field
operators to deal with the many-body quantum mechanics.
We know of no better alternative. The fact that the fields are
noncommuting operators can often be kept in the back of
one’s mind, while they are manipulated quite freely. Only
occasionally does one have to confront their full complexity.
(4) In Part D, we introduce a different way of looking at
the problem of understanding the spin-statistics connection.
We argue for the consideration of two fundamental objects.
The first is just the well-understood harmonic oscillator. The
second is a ‘‘Grassmann’’ oscillator, which is analogous to
the ordinary harmonic oscillator but differs in the essential
way that the amplitudes of Grassmann oscillators anticom-
mute. Bilinear kinematic Lagrangians for these fundamental
objects can be constructed whose symmetry uniquely identi-
fies them by Sudarshan’s argument, as integral or half-
integral spin in accord with the Spin-Statistics Theorem.
Their Lagrangians can be embedded relativistically, and in
the simplest cases lead to the Klein—Gordon spin-0 field
theory for the ordinary commuting oscillator and to the Dirac
spin-4 field theory for the anticommuting Grassmann oscilla-
tor. We characterize this as the statistics-spin connection.
Following Part D, we summarize our basic conclusions.
The objection is frequently raised ‘‘But why anticommu-
tators?’” We are reminded of Rabi asking about the muon,
““Who ordered this?"” We do not know why anticommuting
particles are required to exist. We are glad that they do, the
point being that none of us would be here, if there was a
here, to worry about it if they didn’t. But within the confines
of the local Lagrangian formulation of relativistic quantum
mechanics in ordinary (3 + 1)-dimensional space—time, we
do know that they must have half-integral spin, and vice
versa. In §C3, by a simple example, we illustrate the appar-
ently essential role of relativity in restricting our choice of
theories to those with the observed spin-statistics connection.
The Spin-Statistics Theorem is generally credited to Pauli,
but Pauli and Weisskopf,” Pauli himself,® Iwanenko and
Socolow,’ Fierz,10 Belinfante,!' Belinfante and Pauli,'? and
deWet' all made prior contributions. Pauli did define the
terms in which it was proved, and he criticized'* alternative
proposals from Feynman'® and Schwinger.'® Finally, Liiders
and Zumino,'” and Burgoyne,'® based on developments of
Hall and Wightman'® and Jost,? resolved flaws of logic,
rigor, and generality which infected the earlier proofs. The
foundation of the theorem, however, remained the one de-
fined by Pauli: relativistic quantum field theory. We note in
passing that in atomic physics, for the conduction electrons
in metals, for the phonons in solids, and most recently in
Bose-Einstein condensates at tenths of a micro-kelvin, we
need the result in a nonrelativistic context.
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§A1. Preliminary remarks

Everyone knows the Spin-Statistics Theorem but no one
understands it. This is the complaint expressed by Neuen-
schwander.

The Spin-Statistics Theorem—which states that identical
half-integral spin particles satisfy the Pauli Exclusion Prin-
ciple and Fermi—Dirac statistics which permit no more than
one particle per quantum state; identical integral spin par-
ticles satisfy Bose—Einstein statistics which permits any
number of particles in each quantum state—stands as a fact
of nature. The question is whether physics contains this fact
as a prediction, and if so how this comes about; or whether
physics is merely consistent with the Spin-Statistics Theorem
and that some deeper explanation exists.

The situation turns out to be more simple than we had
been led to believe. The pre-existing proofs of the Spin-
Statistics Theorem have been encumbered by formulations
using the full formalism of relativistic quantum field theory.
This turns out to be unnecessarily complicated. Following
work done by Schwinger and by Sudarshan,?' the proof of
the Spin-Statistics Theorem is reduced to its barest essen-
tials, which are contained in elementary quantum mechanics
extended to include Pauli spinors of half-integral spin
supplemented by one essential feature of the relativistic
theory.

For the sake of completeness, we present brief, heuristic
arguments for the following standard choices:

(1) Anticommutation relations for operators of the generic
form

[a,b'],=ab'+b'a,

leading to antisymmetrized wave functions, Fermi-Dirac
statistics, and the Pauli Exclusion Principle for identical par-
ticles of spin-j satisfying the first-order relativistic free par-
ticle Dirac equation.

(2) Commutation relations

[a,b']_=abt—b'a,

leading to symmetrized wave functions and Bose—Einstein
statistics for identical particles of spin-0 which satisfy the
second-order relativistic free particle Klein—-Gordon equa-
tion.

§A2. Anticommutation relations for Dirac spin-} fields

The Dirac equation® linear in the space and time deriva-
tives is

. (1)

a .V
zaqﬂvuh’nqﬁr— a- T+Bm

Dirac found the four 4 X 4 matrices a and 8 by requiring that
Y also satisfy the relativistic energy—momentum relation
E*=p*+m?. Consider a state of zero momentum with the
Dirac wave function
Y=aue "M pFyetim

(2

which requires interpretation?® of the “‘negative energy’’
piece ~exp(imz), for which

. fmr imt imt
i —eM=—me™=Ee™,
or
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The four-component Dirac column spinors u and v are
trivial for zero momentum. Here we use the standard repre-
sentation with

B=diag(1,1,—1,—1).

u has the top two components equal to a Pauli spinor, the
bottom two equal to zero, and the opposite for v. They are
normalized to

wtu=vlv=1, wlv=vtu=0, (3)
where u' is the Hermitian conjugate to u.

We begin by interpreting a (and b) as the amplitude to be
in the electron (positron) state with energy -+m and charge
e(—e) (the charge on the electron is taken to be e=—|e|.
The mass m=|m| is intrinsically positive).

Speaking loosely, ¢ has a piece aue ‘™, which is the
wave function of an electron of energy m, and another piece
b*ve™', which is the complex conjugate of the wave func-
tion of a positron of energy +m. The probability for an
electron is a*a, and that for the positron part must be de-
fined in a way that is similar but subject to such basic re-
quirements as positive energy and opposite charge (permit-
ting pair production) for the positron. We are reminded of
the raising and lowering operators in the matrix solution of
the quantum theory of the harmonic oscillator, where the
operators a and a' (b,b") replace the complex numbers a
and a* (b,b%*) and the number operators N,=a'a and N;
=b'h replace the corresponding probabilities a*a and bb*.

Reinterpreting (a*,a) as raising and lowering (better, cre-
ation and annihilation) operators (a',a), we have the follow-
ing:

(1) a' creates an electron of energy m, charge e; a annihi-
lates an electron of energy m, charge e. (There is also an
unspecified spin component, and usually a momentum
which is here set to zero.)

(2) Similarly, b' creates a positron of energy m, charge —e,
and so on.

In the usual harmonic oscillator solution of nonrelativistic
quantum mechanics, only the operator a and its Hermitian
conjugate a’ occur, but not & and b*. There is only one kind
of quantum, no charge, and no antiparticle. For the harmonic
oscillator case, the operators @ and a' are linear combina-
tions of the coordinate ¢ and momentum p which satisfy
canonical commutation relations, and the a and a' can also
be shown to satisfy the commutation relations

[a,a']l-=1, [a,a]-=[a',a']_=0. (4)

In a standard elementary, but fundamental, exercise, the ma-
trix representation of the quantum harmonic oscillator fol-
lows from this algebra plus the requirement that the positive
definite Hamiltonian operator

H=a'a+} (5)
must have a lowest energy eigenstate [0). We are led to the
occupation number operator N=a'a whose eigenstates
[0),]1),...,|n),..., are characterized by the integer occupa-
tion number eigenvalues n=0,1,2,..., which are the number
of quanta in each state. To complete the solution we have the

orthonormal occupation number eigenstates |n), and the ma-
trix elements
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(n—1la|n)=n, (nla‘ln—1)= Ja, (nla'a|n)=n.
(6)

All others are zero and the energy eigenvalues are
E,— ‘:T=<”|H_ %lﬂ):(nlN|ﬂ)=n_ (7)

Returning now to the discussion of the zero momentum
solutions of the Dirac equation and the interpretation of the
(a,a'), (b,b") as annihilation and creation operators, we can
write

d
Ez[ .p*(f;;) yd’x=m(a‘a—bb"). (8)
The cross terms disappear because of the orthogonality of u
and v. We are now in a quandary. If we attempt to pursue
the analogy with the harmonic ogcillator solution and assign
commutation relations to (a,af) and {b,b*) (which are no
longer simply related to coordinate and momentum), then the
eigenvalues of a'a and b™h (or bb") would be all positive
integers, and the energy eigenvalues would range from +
to —eo. There would be no lowest energy state but separate a
and b oscillators with positive and negative energies.

The way out of this quandary is to replace commutation
relations for the (a,a’) and (b,b") by anticommutation
relations.® It took five years to understand the problem of
‘‘negative energy states’” in the Dirac equation and to realize
that the *‘filled Dirac negative energy -sea’” with ‘‘holes,”’
should be replaced by the concept of antiparticles. The part
of the field operator ¢ which ~e ™ '“' (where we always
mean w=+ \/'pz-f— m?) is to be interpreted as a particle anni-
hilation piece, the part ~e*'“' as an antiparticle creation

piece.
With anticommutation relations
[a,aT]+=[b,b1]+=l, (9)

the situation clarifies remarkably. It will be necessary to ex-
tend these anticommutation relations by requiring all others
to be zero,

[a,b]=[a,a].=etc.=0.

With the anticommutation relation for » and b7, the en-
ergy

E=m(a'a=bb")=m(a'a+b'b—1), (10)
can be expressed in terms of occupation number operators
N.=a'a, N;=b'b (11)

as
E=m(N,+N;—1),

and readily interpreted. The energy difference
E—Eqg=m(N,+N;)

is positive, as required. The total electric charge and momen-

tum have similar sensible expressions in terms of N, and N7
It is possible to construct a matrix realization of the op-

erator algebra with only two states, |0) and 1), for which

al0)=a'|1)=0, a'|0)=]|1), a|1)=]0). (12)

Each state is labeled by its eigenvalue of the occupation
number operator N=a'a, so

N|1)=1]1), N[0)=0]0)=0. (13)
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In matrix form,

0=(g) =) Z(E :}) 012(‘1’ g)

and the occupation number operator

R

The eigenvalues of the occupation number matrix, which are
the occupation numbers allowed by the anticommuting field
operators, are zero and one in accord with the Pauli Exclu-
sion Principle.

One can verify that the wave function for two noninteract-
ing identical particles is antisymmetric in the exchange of the
two particles. For this we need the field operator ¥(x)
which creates a particle at position x and its Hermitian con-
jugate which annihilates it. We need only the particle a but
not the antiparticle b part. We have

V(x)=2 ajy(x), Y0)=2 alyf(x) (14)
I 7

summed over a complete orthonormal set of single-particle
wave functions ¢;(x), and the corresponding (annihilation)
operators a; . {The notation is standard but confusing. Earlier
we used waqs. (2) and (8)] to denote a Dirac field operator.
Here we temporarily use ¥ in order to distinguish the field
operator from the single-particle Dirac wave function ;.}
To define anticommutation relations independent of the
choice of basis states ¢;, it is necessary that the creation and
annihilation operators of different modes should satisfy the
prescription that ‘“‘all others are zero.””
The state vector for a particle localized at x is

[x)=¥T(x)|0). (15)

The amplitude for a particle in state s to be at position x is

<x|s>=<01*1f(x)art0>=§ ¥;(x){0la;al|0)

=§J Ui(x) 8= ¢hy(x). (16)

For a two-particle state,
(x.y]s.1)=(0|¥(x)¥(y)a}a]]0)

=‘§ ¥;(x)¥u(y)(Ola;azalal|0)

= ;Z U () Y3 ) Os 80— 4055}
= () P(Y) = U (D) G (3), (17)

which is antisymmetric as desired.

In summary, the quantization of the Dirac equation using
anticommutation relations (instead of canonical commutation
relations) for the field operators gives a theory with a posi-
tive energy spectrum, which is naturally interpreted in terms
of electrons and positrons (of spin-3, not shown) satisfying
the Pauli Exclusion Principle and Fermi-Dirac statistics, and
possessing antisymmetric many-particle wave functions.
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This situation was in place by 1932. It would occupy some
of the best minds in physics over the next generation to
satisfy themselves perhaps, but certainly not everyone, that
the matter was closed.

Next we look at the comparable situation for the spin-0
relativistic scalar field satisfying the free particle Klein—
Gordon equation.

§A3. Commutation relations for Klein—Gordon spin-0
fields

There was a long delay and much confusion before the
spin-0 relativistic scalar wave equation was treated in a sys-
tematic and rigorous way by Pauli and Weisskopf. In con-
trast to the Dirac case, everything goes smoothly if we
choose commutation relations for the field operators, and the
resulting Bose—Einstein statistics for the Klein—Gordon
spin-0 particles. If we were to choose anticommutation rela-
tions, we would still find a formally positive Hamiltonian,
but it is infinite for the vacuum state because

Eo=>, w(ata+bb").

No negative energy problems are generated by the solutions
~e*™  which still occur just as in the Dirac case, because
the Klein—Gordon Hamiltonian is bilinear in the time deriva-
tives and produces a factor +m? regardless of the sign in the
exponential.

The Pauli—Weisskopf quantization of the relativistic scalar
field assumes a Lagrangian density which produces the
Klein—Gordon equation as the field equation for a complex
one-component field ¢(x,1):

gt
2= S v4,e-m'e. (18)
Jj=x 2z
% will be Lorentz invariant if ¢ is an invariant scalar under
Lorentz transformations. The Hermitian conjugate of the
field ¢! anticipates the quantization elevating the fields to
operators in the Hilbert space of states.
The generalized momentum canonically conjugate to the

fields ¢,¢" are (abbreviating 3¢/t as ¢., and so on)

[My1=0,. (19)

The Euler-Lagrange equation
d dF CAZEN A

3 g, Vi agl " 99

(20)
is
P
at

just the Klein—Gordon relativistic wave equation.
The Hamiltonian density

FH=yp. .+ P\ 4-F

gt ap
M o N [ [, NSO, I
V4V, pmigl (22)
is positive, which guarantees a positive energy spectrum, in
contrast to the Dirac case.

—Vig=—-m?9, (21)
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- One also finds a conserved four-vector charge-current den-
sity

= QSTE”Gb —¢*'E 2
J=ed' — o p=edli- ¢. (23)

Expressed in terms of momentum eigenstates, the Klein—
Gordon field ¢ is

1

=2 o

where we interpret the expansion coefficients as annihilation
operators a; for a particle of momentum k and creation op-
erators b} for an antiparticle of momentum & and energy
=+ Vi +m?. Substituting these expansions of ¢ and ¢’
into E= [ #d’x and Q= [pd°x gives the total energy and
total charge:

{akef""_”i"+ ble—i(kr—w*r]}‘ {24)

E=2, wy(ala,+bb)), (25)
k

and
Q=§ e(ajay—byb}). (26)

All the cross terms cancel, leaving expressions that are
readily interpreted in terms of particle and antiparticle occu-
pation numbers

N,=a'a, N;=b'b, (27)

if the operators a,a’ and b,b" are assigned the commutation
relations

[a,,,a:,]_=[bk,b1,]_=5t_t, (28)

and all others zero.

This leads to Bose—Einstein statistics with occupation
numbers for each mode allowed to take any positive integer
value, and to symmetric many-particle wave functions.

Without delving into all the pathologies that might de-
velop if we try to quantize Klein—Gordon spin-0 fields with
anticommutation relations (see §C3), we present an argu-
ment used by Pauli and Weisskopf and by deWet. Although
incomplete, it is remarkably close to the proof finally con-
structed by Luders and Zumino and by Burgoyne.

For deWet’s discussion we need the (anti)commutation
relations for the full field operators ¢ and ¢' at different
points of space—time, at equal times, and at coincident points
of space—time. For example, for the free fields above

[#(x.1),d(x",1)]_~[a+bta+bT]_=0.

This is clear because the commutators involved [a.,a]_,
[a,b']_. and so on, are in the category ‘‘all others are
zero.”’

Also, the commutator

[¢(x.0).8"(x".)]-=0.

This follows, not quite so trivially as above, from direct cal-
culation. It follows also from the classical analog because ¢
and ¢' are both generalized coordinates q,, g,, say, whose
Poisson brackets vanish, and whose commutator brackets
also vanish. It can also be argued to vanish because these
equal time operators are separated by a spacelike interval and
the two operations cannot be causally connected, therefore
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the order of the operation cannot matter. The difficulty with
this argument is taking the limit as x—x' in a convincing
way. ‘

One more exercise is worth doing to support our choice of
a and b. The equal time commutation relation

[$(x. )Ty y]-=[P(x,0). B](x".0)]- (29)

can easily be shown from the above expansions in terms of
the a, a'’s and b, b™’s to be i8(x—x"), just the intuitive
result for the canonical commutation relation

1 @
th—.%]-F(q s}=:5UF(q ) (30)
Now we sketch deWet’s proof that anticommutation rela-
tions are impossible for spin-0 fields.
Suppose we try to replace theé anonical commutation by
an anticommutation, so we investigate the possibility

[p(x.1), ' (x".1)]. =0,

which we assume to hold at x#x'. The diagonal matrix
element for an arbitrary state [u) is

Exl (l (.0 x)xl b (x",0)| )

+ Hermitian conjugate=0,

where we have inserted a complete orthonormal set of states

1=§x: Ix){xl-

If this can be continued to x=x", then

EX‘, [{xl#lp)*=0,

leading to the conclusion that a scalar field operator satisfy-
ing the above anticommutation relation has no matrix ele-
ments in the Hilbert space and would have to be the null
operator.

In this simple and direct way, deWet concluded that the
anticommutation relation required | ¢(x,#)|*=0, which could
only be satisfied if ¢(x,r)=0. This nonoperator statement is
the correct conclusion, but does not make explicit the under-
lying assumptions on the requirements of the Hilbert space.

The Dirac field escapes this fate. The anticommutator
[¢,¢'], is not in the category “‘all others are zero,’” because
in the Dirac Lagrangian (linear in the time derivative) iy is
the momentum IT,, conjugate to ¢, and this anticommutator,
by analogy to the canonical commutators, is not zero, but
8 (x—x"). The above matrix element is not zero but infinite,
~&°(0), and the Dirac field survives. deWet went on to
show that no such exceptions could exist for tensor fields and
therefore that it is impossible to quantize integral spin fields
with anticommutation relations. His arguments made essen-
tial use of the full Lorentz invariance of the Dirac and the
Klein—Gordon Lagrangians.

The shortcomings of these simple proofs and others to be
presented over the years were as follows.

(1) Pauli (1940) criticized deWet’s proof as limited to
spin-0 and spin-3, and also limited to the canonical formal-
ism which is difficult to carry beyond these low spins be-
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cause of the need for a proliferating array of subsidiary con-
ditions. In retrospect this appears as a serious lapse in taste
and judgment by Pauli, which caused a long-standing im-
passe.

(2) None of the proofs (including Pauli’s) until those fi-
nally put forward by Liders and Zumino and Burgoyne
(1958) included the effect of interactions, but dealt with free
fields only, or in the case of Feynman and Schwinger with
free fields interacting perturbatively.

(3) The formal requirements underlying the analytic con-
tinuations and the manipulations of the usually singular
products of operators and their matrix elements were even-
tually addressed. The formalism reached daunting dimen-
sions in the work of Hall and Wightman, but did substantiate
the intuitive conclusions.

Schwinger took an informal view about higher spin par-
ticles and about interactions. He maintained that higher spin
particles were not fundamental, and assumed that a model
using spin-} and spin-0 constituents would give the required
generalization with sufficient rigor. Schwinger further as-
sumed that perturbation theory could in some way deal with
the (non)effect of interactions on statistics.

Schwinger’s opinion that spin-0 and -3 solve the basic
problem leaves the truly arduous early work of Fierz, Belin-
fante, and Pauli himself, based on the spinor representations
of the Lorentz group, as not only arcane but also obsolete
and unnecessary. We bypass, as well, the beautiful, formal,
and economical proofs especially of Burgoyne, which prove
the Spin-Statistics Theorem beyond doubt but perhaps also
beyond comfortable comprehension, in favor of the proof
following Schwinger.

§A4. Alternatives to the standard statistics

Before focusing on the standard choice of Bose—Einstein
or Fermi—Dirac statistics, we briefly describe interesting re-
search which has the all-important aim of searching for small
violations of these two possibilities. Prototype expcrimcntszs
look for K-shell x-rays from electrons falling into filled
atomic orbits, in violation of the Pauli Exclusion Principle.
The objection to the experiment by Reines and Sobel within
the confines of ordinary quantum mechanics of identical par-
ticles is described by Amado and Primakoff,? and goes back
to the original reasoning which led He:isos:nbeargrIr to the no-
tion of symmetric or antisymmetric many-particle wave
functions. As Amado and Primakoff explain again ‘‘... the
Hamiltonian must treat the identical particles completely
symmetrically’’ and as a result *... identical particles in non-
relativistic quantum mechanics can be described according to
unmixable symmetry types, and worlds of different symme-
try type do not mix."’ In brief, there are no small violations
of identity. Nonetheless, Amado and Primakoff conclude that
such experiments do have important motivations, one of
which is to test the stability of electrons.

Greenberg and Mohapatra®® have developed a theory
which employs a single oscillator with mixed trilinear
(anti)commutation relations of the Green type.? The theory
includes a parameter 8 which interpolates between Fermi-
Dirac statistics (8=0) and “‘para-Fermi’’ statistics (8=1)
with occupation numbers 0, 1, 2 for parafermions in a single
state. The result is a parallel world of para-electrons which
can violate the usual statistics at order 8%. As described by
Greenberg and Mohapatra, the importance of this work is to
give a quantum mechanical description of small violations of
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particle identity and to give a basis for interpreting experi-
ments of the K-shell x-ray search type. They state that the
**... theory cannot be represented in a positive-metric (Hil-
bert) space.”

Subsequent developments by Grc:enberg30 show that there
is an interpretation in the framework of the quantum me-
chanics of quons, based on a generalized g-mutator which
interpolates continuously between commutator and anticom-
mutator,

T g
ajak— qakaj—- (S}k £

Greenberg constructs quon Fock states which include the
symmetric, antisymmetric, and mixed symmetry states. The
norms of the inappropriate states vanish in the g=*1 limit
as expected and return the theory to Bose-Einstein or
Fermi-Dirac statistics. For other values of ¢ there is now the
possibility, for example, of g-electron radiative capture into
a symmetric 2 g-electron K-shell orbit from a previously
symmetric continuum-bound 2 g-electron state, without vio-
lating the requirement of Amado and Primakoff that the
Hamiltonian evolution of identical particles not change the
symmeltry type.

Greenberg also constructs quon number operators and the
free-particle Hamiltonian which are generally of infinite or-
der in the a, a', and lead to operators nonlocal in coordinate
space. Greenberg concludes that the criterion of localiry is of
critical importance in limiting the choice of. fields to those
with standard commutation or anticommutation relations.

In spite of these difficulties, there is profound interest in
the general question of violations of the usual statistics. An-
other possibility referred to by Greenberg and Mohapatra is
ordinary quantum mechanics and statistics in a space of N
=3+d dimensions. Fermions could have an antisymmetric
excitation in the invisible (compactified) extra d dimensions,
leaving a symmetric wave function in the observed three
dimensions. A quantitative estimate of the effect of such ap-
parent violations of antisymmetry on the Pauli Exclusion
Principle tests is obviously very model dependent. Ramberg
and Snow interpret their search for a violation of the Pauli
Exclusion Principle as an upper bound on Greenberg and
Mohapatra’s 8 parameter,

B2<1.6X10"%,

which might be compared to the square of the ratio of the
electron mass to the Planck mass ~10™%, or to the GUT
mass ~ 107, More recently, however, membrane theorists
have been speculating on a large compactification radius for
one ogothcir eleven dimensions, which could give a ratio
~107,

It is clear that these and many other speculations can lead
us far afield from our announced goal of ‘‘understanding”’
the Spin-Statistics Theorem. We take an orthodox, even pe-
destrian, view and restrict the discussion to known, estab-
lished, elementary, but hopefully fundamental physics. We
do this without in any way trying to inhibit conjecture, but
rather to give a firm basis for conjecture by establishing bare
minimum postulates which can support the theorem.

Our strategy is: We do ordinary quantum mechanics in
ordinary (3+1)-dimensional space—time. Within ordinary
or standard quantum mechanics we do include the technique
of second quantization and field theory as a convenient and
powerful tool for dealing with the many-body problem. The
extension to relativistic quantum field theory, while perhaps
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intimidating, is still the ordinary quantum mechanics of the
many-body problem, but with the possibility of transitions
between states having different particle numbers.

We define canonical, or standard, quantum theory to mean
that the theory is derived from a Principle of Least Action
based on a local Lagrangian. The original definition of ca-
nonical meant the deduction of guantum theory from the
prescription of replacing classical Poisson brackets by the
corresponding quantum commutator brackets (see again the
work of Pauli and Weisskopf in §A3), and the Hamilton—
Poisson equations of motion by the Heisenberg-commutator
equations. In the presence of anticommutating fields, we
must generalize the definition to a purely quantum Principle
of Least Action. We retain as much of the structure of clas-
sical mechanics as possible, including, for example, the role
of the Hamiltonian as the time-translation generator in
Heisenberg-commutator equations. The goal of a full quan-
tum dynamics can be achieved at least in simple cases by the
prescription of correspondingly simple commutation or anti-
commutation relations. A third alternative is possible in a
slightly more general interpretation of the Principle of Least
Action. This choice is Green’s parastatistics, which employs
a trilinear commutation relation and has somewhat patho-
logical representations which do not seem to be realized
physically. An introduction to the subject can be found in
Ref. 29. We will not pursue this branch of the subject here,
but refer the reader to an excellent review of modern alter-
natives by Greenberg, Greenberger, and Greenbergest.”! The
impact on our very traditional view of developments such as
color confinement and higher dimension string theory also
remains to be explored.

PART B. RESPONSES TO NEUENSCHWANDER'’S
QUESTION

§B1. Introduction

Neuenschwander’s question excited us, obviously, but
generated a remarkably limited direct response. Two years
after publication of the question, there have been only four
published replies.

In our opinion, and in agreement with the response of
Hilborn, none of the intuitive arguments put forward consti-
tute satisfactory elementary proofs of the Spin-Statistics
Theorem. They leave the situation essentially as Feynman®?
described it 30 years earlier.

§B2. Bacry’s proof and Hilborn’s critique

We discuss the simplest proof, outlined by Bacry.* Bacry
identifies an exchange operator & with a suitably chosen ro-
tation operator R. The situation described in his reply is a
particularly simple one which illustrates the essential idea
but in fact contains the basic flaw which invalidates his ar-
gument from being the sought-after *‘simple intuitive
proof.”’ If his argument had been valid, it would have meant
that no reference to relativity was necessary and would have
negated all previous ideas on the subject. Later we discuss an
apparently more general argument along the same line, ap-
pearing in an earlier paper by Broyles, * which defines the
exchange operator in terms of a rotation operator designed
for situations more general than the simple configuration de-
scribed by Bacry. However, Broyles’ argument suffers from
the same critical flaw as does Bacry’s.

290 Am. J. Phys., Vol. 66, No. 4, April 1958

Bacry considers the state of an electron at (x,y,z)
=(+a,0,0) with spin component s,=+j described by a
wave function

_(5(x—a)5(y)5(z))

AT 0 {31)

and another electron at (x,y,z)=(—a,0,0) with s,= — } de-
scribed by a wave function

0
“’B‘(a(ﬁa)a(y)a(z))'
The two-electron wave function is written as

U 4p(1,2) = s (1) ¢hp(2) = (1) P4 (2), (32)

where we need to make a choice. = between a symmetric
wave function or an antisymmetric wave function for the two
electrons. Under the exchange operation &), taking 12,

512\1’_43(1,2)5\["43(2,]):i‘I’AB(l,Z). (33)

Bacry then observes that a finite rotation by 7r around the y
axis leaves this two-particle state unchanged. The rotation is
generated by the operator

Ry(ﬂ.):e-irr.fy=e—iﬂLye—l'ayvn‘ZZe*HrLy(_ fO'y]

=e—firL_,.(0 _1)’ s (34)
1 0
Acting on the wave function ¢,
0
R,(w)%(x'y'?-):(5(—x~a)5(y)5("2}
=QIIB(X|)’9Z); (35)

and on iz,

R (m)¥p(x,y,2)=— Ya(x,y,2).

Acting on the two-particle wave function,

Ry(m)W 5p(1.2) =~ (¢p(1) 14 (2) = tha(1) 15(2))
=-— i‘;’rﬁg( 1,2).

Bacry now makes the unjustifiable assumption which negates
the proof. From the fact that the two-particle state is invari-
ant under the finite rotation R,(7), he concludes that the
wave function is also, and requires that

R (m)¥,5(1,2)=W45(1.2),

which, if true, would require the choice of the negative sign
in the = and would determine that

glzq’Aﬂ(l,Q)EwﬂB(zs] )=—¥,4p(1,2),

the desired result.

However, the invariance of the state does nor require the
invariance of the wave function in the case of a discrete
symmetry, which is what we have here. There is nothing to
rule out the possibility of a sign change of the wave function
under a rotation through r, and therefore the above argument
can give no information about the choice of exchange sym-
metry of the wave function.

The change of sign of a wave function under a discrete
symmetry transformation is a common feature of wave func-
tions: Note the invariance under a 27 rotation of a spin-3
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particle state, but the wave function changes sign; or the
invariance under reflections of a pseudoscalar state, but again
the wave function changes sign.

Broyles’ argument, which predates the whole Neuen-
schwander incident, is primarily concerned with showing
that a rotation operator exists which can serve as the ex-
change operator for two spins not simply parallel or antipar-
allel (as in Bacry’s case), and that therefore a rotation opera-
tor exists which exchanges the two particles for general spin
states. The actual details of this operator [in Broyles’ Eg.
(16), a result which is somewhat contrived and artificial in
our view] need not concern us. What does concern us is his
Postulate A on which he predicates his proof of the Spin-
Statistics Theorem:

“‘Postulate A: If we write the wave function for
two particles in such a way as to exhibit all of the
internal quantum numbers and the spatial posi-
tion of each and, furthermore, if the two sets of
quantum numbers including coupling constants
and spin are identical with the exception of the
spin components along some axis and the spatial
positions, then this wave function must be invari-
ant (Note: Italics added) to any (Poincaré) trans-
formation of the coordinate frame (with all
physical apparatus connected to it) that produces
a wave function with the same two sets of quan-
tum numbers.”’

The critical part of this postulate, with which we disagree,
is the phrase in italics.

Broyles goes on to emphasize: ‘*‘Any combination of ro-

tations and translations of the coordinate frame that leaves
the picture looking just as it did before these operations,
must also leave the wave function unchanged.”” He does em-
phasize that the postulate is special to two-particle wave
functions for the reason cited above, that the wave function
for a single particle with spin-3 under a rotation of 27 is an
immediate exception without this restriction. We conclude
that Broyles” Postulate A is ad hoc special pleading which
has no other purpose than to construct his proof of the Spin-
Statistics Theorem, plays no other role, and is to be deleted
from the lexicon of quantum mechanics.
In Hilborn’s words: Bacry’s and similarly Broyles’
. argument establishes a spin-statistics connection at the
expense of an additional assumption about how the wave
function behaves under coordinate transformations. This as-
sumption goes beyond the requirement that all observables
remain unchanged and is equivalent to restricting the wave
functions to the totally symmetric or totally antisymmetric
representations of the permutation group or, equivalently, re-
stricting physical states to those represented by single rays in
Hilbert space.”

§B3. Topological markers and Feynman’s models

The first response to Neuenschwander’s question was
from Gould,> who referred to the Feynman Lectures (1963)
and summarized Feynman's 1986 Dirac Lecture®® on the
same topic. Here, as Gould describes it, Feynman
“‘sketched”” an elementary argument for the spin-statistics
connection. Unfortunately, the fascinating scenarios that he
described in his lecture do not constitute a proof or even an
explanation of the Spin-Statistics Theorem. In another reply,
von Foerster’’ recalled similar heuristic explanations of the
result by others.
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Gould summarizes Feynman’s argument in part, by re-
counting the paradoxical behavior of the rotation of a teth-
ered classical object. The purpose of the classical paradox is
to convince people that a 27 rotation is not just a trivial
return of everything to the way it was, even classically, and
that we should not be distressed by the resulting change in
the sign of the wave function of a spin—% particle. The point
of the demonstration is—grasping the handle of a full coffee
cup, without spilling the coffee, rotate the cup through an
angle of 27 around a vertical axis while keeping feet fixed,
but at the expense of a twisted arm. A further 27 rotation
through a total of 47 returns the cup (and the arm) to the
original configuration. This is supposed to remind us of the
sign change in the wave function of a spin-} ;;)anicle under a
247 rotation, and the need to rotate the spin-3 particle twice
around through 47 to return to the original wave function. So
far, so good. But no further. it

Hilborn states it beautifully: **... analogy is not an expla-
nation. Nowhere does the spin of the object enter the discus-
sion nor is it clear what the twist in the constraint has to do
with the change in sign of the fermion’s wave function. ...
why are boson wave functions unchanged... .”’

It was Feynman’s purpose to show that ‘... the mysterious
minus signs in the behavior of Fermi particles are really due
to unnoticed 27 rotations!”’ Feynman produces in his Dirac
Lecture two other models of identical particle exchange
which reproduce the spin-statistics connection. One is a
nearly classical model of a spin-3 object which has the re-
quired change of sign under a 27 rotation, and also—it is
claimed—under an exchange of two identical particles.
Feynman describes the composite object invented by Saha,*®
consisting of a spin-0 electric charge e and a spin-0 magnetic
monopole of magnetic charge g. The electromagnetic angu-
lar momentum

£

£=j FX(EXB)d*r (36)

is independent of the separation of ¢ and g, directed along
the line between them, and equal to eg, giving the Dirac
relation eg=1 when the angular momentum assumes its
minimum nonzero value.

Now suppose the electric charge e is moved in a circle
around the magnetic charge g. The wave function acquires a

phase
¢=ef£-df=ef§-d§’ﬁ (37)

The surface integral [d.% can be deformed into an easily
done integral over a hemisphere centered on the magnetic
charge, giving the result

¢=e(dmg)2=eg2m=. (38)

As desired, the phase of the spin-; object has changed by 7
for a rotation through 2r.

Next, Feynman considers the process of exchanging two
(very compact) eg composites, call them 1 at x and 2 at y.
He views this as 1 translated from x—y in the vector poten-
tial of 2, and 2 from y—x in that of 1. They are supposed to
have their axes parallel and fixed in direction throughout the
exchange. Then the phase acquired by the composite wave
function during the exchange is

1. Duck and E. C. G. Sudarshan 291



¢':(|bl+¢2=ejyliz'dfl+€f t‘_{l'dfg,
x ¥y

—e f B-d=, (39)

just the same closed line integral that occurs in the 27 rota-
tion, and just what is required by the Spin-Statistics Theo-
rem.

Finally, Feynman proposes a prescription for the exchange
operator &),: Rotate each particle around the other by an
angle mr, which is equivalent to a 27 rotation of one particle
around the other. The net effect for spin-0 particles is a factor
1 and for spin-3 particles a factor — I, in accord with the
Spin-Statistics Theorem.

As a corollary, Feynman reminds us of an argument by
Finkelstein® to demonstrate that in the rigid rotation of two
particles with no rotation of their internal axes, there is a
relative rotation of each by 7. This can be seen by attaching
the two ends of a ribbon, one to each particle, and identifying
the ‘‘inside edge’’ initially, which becomes the ‘‘outside
edge’” after the rigid rotation. To complete the exchange and
return to the original configuration (including the ribbon)
requires a further rotation of each particle around its own
body axis by , for a total rotation by 27 and a factor — 1.

§B4. Critique of topological markers

So what is wrong with these proofs of the Spin-Statistics
Theorem which Feynman sketched?

The argument Feynman borrowed from Finkelstein, which
endowed elementary particles with a connecting ribbon to
keep track of their orientation, has to be dispensed with for
the reason that there are no topological appendages to Cartan
spinors, as we discuss later in this section. We need a proof
that views an elementary particle as a mathematical point or
we need to prove that such a view is untenable, but we can-
not endow elementary particles with a property which is
needed for no other purpose. So a ribbon attached to spinors
is not allowed, and we have no reason to identify the ex-
change operation as a rigid rotation (with internal axes unro-
tated) followed by two internal rotations through angle 7 to
make the spinors ‘‘face’” each other again, thereby produc-
ing a minus sign. Cartan spinors have no face.

The demonstration based on the charge-monopole com-
posite suffers from the same disqualification of endowing an
elementary particle with the unphysical superstructure of a
magnetic field. In the ribbon case, the exchange operation is
the rigid rotation of each (with internal axes held fixed) fol-
lowed by two rotations by 4r which result in the sign change
required for Fermi-Dirac statistics. In the composite case,
the exchange operation is the rigid rotation of each compos-
ite (with internal axes held fixed) but with no apparent inter-
nal rotations. The purpose of the ribbon medel is to convince
us that an unintended or unnoticed or at least unmentioned
rotation of 27 has actually occurred somehow.

In either case, the topological markers on the elementary
particles have to be ruled out as extraneous.

Biedenharn and Louck*® have discussed just these proper-
ties of rotations in Chapter 2 of their book *‘‘Angular Mo-
mentum in Quantum Mechanics. Theory and Application.”
They describe in detail and illustrate with intricate diagrams
the Dirac construction which demonstrates that *“... for solid
bodies a rotation by 27t is not equivalent to the identity, but
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that a rotation by 47 is...."" The solid (i.e., impenetrable)
body is connected to an external coordinate frame by at least
three strings which become inextricably tangled after the 2
rotation but can be untangled after 47. After a number of
caveats concerning the Dirac construction, Biedenharn and
Louck then make the unequivocal statement ‘‘Dirac’s result
must be carefully distinguished from the similar behavior of
spinors under rotation. ... spinors are peint objects, in con-
trast to the objects in Dirac’s construction, which must have
a finite size.”

The Cartan definition associates a spinor (£;,£,) with an
isotropic vector (x;,x,,x;) defined as a three-dimensional
complex Euclidean vector of zero length x3 + x2+ x2=0. The
connection is

n=6-E, =iEHE)y x=-26&E,  (40)
which are nicely expressed using the Pauli matrices as
x=¢T%a¢, (41)

with #=icg,. From the bilinear connection between the
spinor £ and the vector x, Cartan deduced the rotational
transformation of the spinor to be the “*square-root’’ of that
for the vector. Only the relative sign of &, and £, is defined
since the spinor reverses sign under a 27 rotation. This is the
source of the statement that the Cartan spinor is a point
spinor of zero length. It has no other identifying properties
beyond its associated isotropic vector which determines two
complex spinor components within an overall sign. There is
no topological handle, as would be the case for the solid
bodies of Dirac’s construction and similar classical analogs.

Hilborn’s reply refers also to the possibility of the braid
group playing a role in understanding the spin-statistics rela-
tion. Biedenharn and Louck introduce the braid group of
order n as the crossings of n strings attached at top and
bottom, which run continuously downward without looping
back. There are two elementary operations:

(a) oy, which crosses string i over string i+ 1 [numbered
from the left before (above) the operation];
(b) o, ', which crosses string i under string i+ 1.

The operations form a group of operators oy,...,0,-; for
which

(a) o and o, generate the group through
To=010y 0,1, 0;=(0p) 'ay(0g) ™,

(®)  oi0;=0y0; for j=i+2,

©) 0i0410;=0i410:04,.

Biedenharn and Louck characterize the braid group math-
ematically as more fundamental than the permutation group,
and physically as the natural tool to analyze many path-
dependent problems. The braid group is different from the
permutation group for two dimensions but they coincide for
three- or more-dimensional Euclidean space.

Imbo, Imbo, and Sudarshan®' have shown using braid
group analysis that—far from providing an-understanding of
the spin-statistics connection—topological considerations for
point particles lead to a proliferation of presumably unreal-
ized possibilities beyond Bose—Einstein, Fermi—Dirac, and
even para and @ statistics. The so-called exotic statistics are
associated with higher dimensional representations of the
permutation group, in contrast to the Bose—Einstein and the
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Fermi—Dirac statistics, which are associated with the one-
dimensional totally symmetric and totally antisymmetric rep-
resentations.

A sophisticated variant of Bacry’s, Broyles’, and Feyn-
man’s identification of an exchange operator as a rotation
can be found in the work of Balachandran et al.** Their work
is based on ‘‘topological properties of suitable classical con-
figuration spaces and show that the 27 rotation of an indi-
vidual soliton is homotopic to the exchange of two identical
solitons... " Similar to Bacry’s argument, they obtain the
spin-statistics connection without relativity or field theory,
but with detailed topological assumptions which exclude co-
incident coordinates from the many-body state space. We
can only refer the reader to their detailed arguments, from
which we cite some of their qualifying remarks... “‘one out-
standing problem... concerns its relation to field theory...
suggestive if as yet vague likeness to Fock space... try to
formulate classical Lagrangian mechanics on these spaces
and eventually to quantize....”” Certainly, the achievements
of this work regarding solitons appear to be impressive, but
without a connection to field theory—which is, after all, no
more than a convenient and powerful way to handle the
quantum mechanics of the many-body problem—its broader
significance is still in question.

In Balachandran’s theory where topologically nontrivial
many-particle manifolds exclude coincident points, and in
work based on variable commutation relations, there does
not seem to be this canonical foundation which would give
hope for a complete dynamical theory. What is referred to
there as “‘field theory’” means only that ficlds can be written
down of the form

z,zxu):Ej) a;d;(x)+bll(x),

but does not include an Action-Principle-based dynamics for
these fields.

Most recently, Berry and Robbins*® have extended ordi-
nary quantum mechanics to include the physics of exchange
by defining an ‘‘exchange rotation™ operator, by which the
spin basis is smoothly parallel transported during exchange.
The Pauli sign (—1)?* appears as a geometric phase of to-
pological origin and requires the spin-statistics connection
for single valuedness of the wave function. Their work pro-
vides a formal basis for the heuristic explanations of Bacry
and Broyles. Hopefully, our work can serve as a useful peda-
gogical introduction to theirs, whose topological complica-
tions are certainly not less than the complications of field
theory.

§BS. Feynman’s unitarity argument

In his 1986 Dirac Lecture, Feynman also returned to an
argument for the spin-statistics relation that he had made
some 35 years before in his original quantum electrodynam-
ics paper. There he had pointed out that the consistency of
perturbative quantum electrodynamics was intimately depen-
dent on a particular sign reversal in the electron—positron
one-loop amplitude. The sign reversal can be traced to the
feature of the Feynman propagator which replaces ‘‘negative
energy particles’ by positive energy antiparticles. In the
second-quantized formulation, the sign reversal arises from
the anticommutation hb'——b'b. The one-loop amplitude
is a recurrent feature of many processes and, most fundamen-
tally, it occurs as the first contribution to the vacuum polar-
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ization amplitude. Feynman shows that without the sign
change, the vacuum-to-vacuum transition probability would
be greater than one, and the spin-statistics connection is re-
quired in order to avoid this failure of relativistic perturba-
tion theory. Pauli criticized Feynman's analysis and showed
that the sign change conjectured for antiparticle amplitudes
violated charge-conjugation invariance and amounted to a
field theory with an indefinite Hilbert space metric, hence the
violations of unitarity manifested as a probability greater
than one. In his lecture, Feynman ignored Pauli’s comment
(to which he evidently never responded) and presented the
same argument in a slightly different guise.

Feynman argues that the unitarity of the § matrix requires
a cancellation of signs which arise from two sources: One
sign change arises from ‘‘particles propagating backward in
time,”” requiring two time reversals of a Dirac spinor with 2
resulting sign change (analogous to that occurring in a 27
rotation); and a cancelling sign change from the anticommu-
tation of Dirac field operators. His claim is that the time-
reversal properties of the Dirac spinor require Fermi-Dirac
statistics in order to avoid violations of unitarity, clearly con-
taining seeds of Schwinger’s proof based on time-reversal
invariance, and reversing the logical preeminence of the
Spin-Statistics Theorem over the TCP theorem which had
been specifically established in the proofs of Luders and
Zumino, and of Burgoyne.

Feynman evaluates the one-loop scattering amplitude us-
ing Feynman rules. Consider the following somewhat artifi-
cial example, just to make his point: We imagine a toy model
of spinless mesons ¢ coupled to Dirac particles ¢ by an
interaction @*yrif. The ¢pd— P scattering amplitude in-
cludes an amplitude with a ¢, loop as intermediate state.
We are instructed that the same amplitude evaluated with the
i,y loop replaced by a loop of two spin-0 particles has the
appropriate sign required to respect unitarity.

What is different about the amplitude with the i, 4 loop?
Feynman says that there are two differences. One is a sign
change due to the rearrangement—by three anti-
commutations—of Dirac field operators from the order
which occurs naturally in the product of interaction Hamil-
tonians evaluated at the two vertices

G(2)P(2) (1) y(1),

into the order

(1) P(2)g2) (1),

The rearrangement is necessary so that we can identify the
Feynman propagator

Sp(2e1)=(0]¢(2)¥(1)|0) (42)

of a particle propagating forward in time from vertex 1 to
vertex 2 followed by the Feynman propagator

Sp(1=2)=(0]y(1)(2)]0)

of a particle propagating backward in time from 2 to 1. This
triple anticommutation results in a characteristic minus sign
accompanying every closed fermion loop when -evaluated
with the Feynman rules.

Minus sign number one. Feynman explains away this mi-
nus sign as necessary to cancel another minus sign intro-
duced by a double time reversal of the “‘actual’” antiparticle
spinors at vertices 1 and 2 to the ‘‘backward in time’” nega-
tive energy particle spinors. The net result is said to be con-
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sistent with the sign of the spinless loop case, which is taken
to be consistent with the unitarity of the S matrix.

The projection operator A , (p) onto positive energy Dirac
states

pytm
2m

(43)

—
5=

As(p)= 2,+ ulp:s)u(p;s)=

involves free Dirac spinors u(p) satisfying (py—m)u(p)
=0 with p2=m?, py>0 and normalized to &u= 1. The pro-
jection operator onto negative energy states requires an extra
minus sign

A_(p)=—2, u(—p;8)i(—p;s),

5

or

— 2 v(p:s)i(pss). (44)

The technical details are reproduced in the Appendix for
easy reference.

Minus sign number two. Just Feynman’s change of sign
from the time reversal (p— — p) of two Dirac spinors.

At last, the ¢,y loop is expressed in a way which makes
clear that it has the same sign imaginary part as obtained for
a loop with spinless particles. The optical theorem (reviewed
in the Appendix), which is based on unitarity, requires that
the imaginary part of the forward scattering amplitude
should be negative, so all is well. The consistency depends
on two minus signs—one from the original anticommuta-
tions, one from the double time reflection of the Dirac
spinors; and two projection operators, one onto physical,
positive energy particle states and one onto so-called ‘‘nega-
tive energy,”” but actually physical positive energy antipar-
ticle states.

The perfect equivalence between particle and antiparticle
propagation in the Feynman propagator is clear from the
original prescription® and is discussed in more detail in the
Appendix.

The same arguments—in particular, the sign of the one-
loop amplitudes—follow also from the path integral formu-
lation of quantum mechanics. The path integral formulation
achieves all the results (and more) of canonical quantum
field theory without the formalism of second guantization.
The device which makes this possible for Fermi—Dirac anti-
commuting fields is the calculus of Grassmann variables,
which anticommute with each other. It is a long story, and
we simply accept the result that the usual Feynman rules are
reproduced.

Commuting Dirac fields violate unitarity as in Feynman’s
above diagrammatic argument. The interesting questions
from this point of view are the basically unanswerable exis-
tential question of **“Why Grassmann variables?”’ and a fa-
miliar question in reverse (which we finally answer in Part
D)—*‘‘How do we recognize a priori that a Grassmann field
is a Dirac field?"

Feynman’s argument seems to be a long and tenuous
thread on which to hang a proof of the Spin-Statistics Theo-
rem. Any attempt to actually evaluate the severely divergent
loop amplitude would lead to even more reluctance to accept
this as a fundamental proof of the Spin-Statistics Theorem.
We hazard a guess that Feynman’s argument leaves Neuen-
schwander still dissatisfied.
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PART C. SCHWINGER AND THE SPIN-STATISTICS
CONNECTION

In this section, the long program begun by Schwinger
seeking an understanding of the spin-statistics connection is
described in its most basic terms. It will be frequently em-
phasized that Lorentz invariance, or requirements based on
it, is stll a fundamental necessity.

§CI1. Introduction

Schwinger assumed that the kinematic part of the La-
grangian by itself determines the spin-statistics connection.
This would be true if weak coupling perturbation theory
based on the free Lagrangian was valid. Schwinger claimed
the validity of these conclusions independent of perturbation
theory on the grounds that at “‘sufficiently high’ energies,
the kinematic terms dominate. This%s certainly true for po-
tential scattering where the first Born approximation is then
valid. It is also true for non-Abelian gauge theories where
*‘asymptotic freedom’ makes perturbation theory valid at
high energies; but this assertion cannot be taken for granted
in all cases.

The validity of Schwinger’s assumption is supported in
the work of Umezawa and Kamefuchi, of Kall'en, and of
Lehmann.** They show that a two-point Green’s function or
propagator for a scalar field

FP(x=y)=(0|$(x)$(y)|0) (45)

can be expressed as a superposition
F{z)(x—y}=j d(mz}p(mz}Fézj(x—y;m) (406)
0

of the corresponding Green’s functions Fy>’ for free particles
of mass m, with a positive weight function p(m?). A similar
conclusion holds for spinor fields. On this basis, it is suffi-
cient to understand the behavior of the free particle Green's
function and the commutation properties of the free fields.

Luders and Zumino, and Burgoyne were able to establish
the spin-statistics relation without this assumption within the
framework of relativistic quantum field theory obeying cer-
tain Wightman axioms. For a scalar field obeying anticom-
mutation relations for spacelike separated field points, it fol-
lows from the structure of the Green’s function that

FP(x—y)=0, x-y spacelike.
But this implies that

2
=0 (47)

J dxf(x)(x)|0)

for any suitable test function f(x). The conclusion is that the
full interacting field ¢(x) annihilates the vacuum and must
therefore be a null field. The conclusion is that scalar fields
cannot obey the anticommutation relation ‘‘all others are
zero.”” Comparable arguments rule out the possibility of
commutation relations for spin-4 fields.

The Wightman-based proofs make no assumptions about
equations of motion, and assume no specific Lagrangian; yet
the analysis yields conclusions very similar to those obtained
by deWet, by Pauli, and by Schwinger. Their common fea-
ture is the symmetry properties of the covariants bilinear in
the fields, which themselves are finite dimensional represen-
tations of the Lorentz group. The relativistic invariance is
used only to identify the symmetry or the antisymmetry of
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such terms. This provides the clue for a much simpler proof,
as we see in the following section on Sudarshan’s analysis.

§C2. Elementary proof of the spin-statistics theorem

The full complications of Lorentz invariance and relativ-
istic quantum field theory turn out to be unnecessary in Su-
darshan’s proof of the Spin-Statistics Theorem.*® They are
replaced by a number of intuitive requirements familiar from
nonrelativistic quantum mechanics. There still remains—as
we will discuss in detail in §C3—a key part of the argument
which we have traced only to the requirement of separate
relativistic kinematic Lagrangians for individual relativistic
fields.

Sudarshan considers a (3 - 1)-dimensional space—time
with multicomponent spin wave functions having the usual
rotation properties, which are essential to the proof. We im-
pose four conditions on the kinematic part of the Lagrangian
for an individual field: It must be :

(1) derivable from a local Lorentz invariant field theory for
fields which are each a finite dimensional irreducible
representation of the Lorentz group (tensor or spinor);

(2) in the Hermitian field basis £=¢';

(3) at most linear in the first derivatives of the field; and
finally, it must be

(4) bilinear in the field &

These conditions impose the requirements that the Euler—
Lagrange equations of motion of each basic free field should
be first-order, linear differential equations of the Hamiltonian
form, local in space and time. The proof makes explicit use
only of the rotational invariance guaranteed by the Lorentz
invariance,

The kinematic terms in the Schwinger Lagrangian have
the generic form

Fmh b b E D GV VLK
) rSs rost s 2f=|-2v3 rhjss Gl L

- fr'fser s (48)

summed on indices r,s which are related to the spin of the
field, as we will discuss in individual examples. Any *‘fla-
vor’” indices « (corresponding to an internal chargelike de-
gree of freedom) of the field ¢ are treated separately, and
each such flavor type has its own kinematic Lagrangian. For
spin-0 and no flavor, one Hermitian field is sufficient and r,
s=1; spin 1 and no flavor, r, s=1,....4 (because the Hermit-
ian spinors have two components for the real parts of the
Pauli spinors, two more for the imaginary, but must be
doubled again for Dirac spinors); spin-0 and one flavor (cor-
responding to the complex field of a charged particle), r, s
=1, a=1,2 and two separate Lagrangians, 4; spin-3 and
one flavor, r, s=1,....4, a=1,2, and so on. The coefficients
K,; and M, are elements of numerical matrices defined in
the (r,s) space of the components of the fields &,.. The num-
ber of field components (the dimension of the K, M matri-
ces) is left unspecified for the moment, but can be larger than
the minimum numbers mentioned above,

Schwinger used Hermitian fields §r=§:, which are con-
venient for the special purpose of the spin-statistics connec-
tion. The usual complex field of a charged particle requires
one flavor and two such Hermitian fields, one for its real part
and one for its imaginary part. A familiar example is the pion
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triplet usually expressed in terms of the charge eigenstates
't~ , 7" but here in terms of Hermitian fields |, m,, 5.
We write separate kinematic Lagrangians for each Hermitian
field, each labeled by a separate flavor index which may be
left implicit. Schwinger also required Lorentz invariance and
Hamiltonian equations of motion, so he used a Dirac-like
Lagrangian at most linear in the first derivatives of the fields.
Both of these stratagems are unfamiliar, and can lead to a
proliferation of field components in otherwise simpler situa-
tions. The simplest case of a real scalar field ¢ satisfying the
Klein—Gordon equation requires the introduction of an aux-
iliary 4-vector field V,, and 5 X5 matrices K and M. We will
describe simple examples in detail in the next section, but
first we return to Schwinger’s Lagrangian and Sudarshan’s
elementary proof of the Spin-Statistics Theorem.

It is a property of the SO(3) group of proper rotations in
three dimensions that representations belonging to inzegral
spin have a bilinear scalar (rotationally invariant) product
symmetric in the indices of the factors: For example, the
scalar product of two real vectors is

(VI,V2)=_ z vaVZké‘jk’ (49)
j.k=123

a familiar result. In contrast, half-integral spin representa-
tions have antisymmetric scalar products: For spin-3, the sca-
lar product is

($1,9)= g}  rts(ioy)rs. (50)

This result is familiar from the spin-0 combination of the
spin-1 spinors & and S,

d12(J=0)=(a, 82— B1a7). (51)

We note in advance that the invariance of these scalar
products under the exchange 1«2 already requires the spin-
statistics connection.

The kinematic Lagrangian is of the form

F=2 £A ¢, (52)

The matrix A,; contains differential operators d=d—4J as
well as numerical Hermitian matrices K,M:

i

i = »
A= EKUa,—szaj—M : (53)

The terms in the Lagrangian must be scalar invariants under
the group of the indices (r,s), that is they must be scalar
products bilinear in the &,. The indices r,s are spin indices,
and the requirement is rotational invariance of the Lagrang-
ian. A common unsummed flavor index « is implicit on each
term in the Lagrangian. The Lagrangian must be invariant
under the change of order of any two fields because the order
of the fields is undefined a priori (within an ignorable ¢
number) and must be irrelevant.

Under the exchange of two fields &< ¢, the affected
terms in the Lagrangian change to

§FAJ"S§J e ‘fsAsr‘fr_’ + gsA rsgri ‘grAsrgs

with (+) for commuting fields, (=) for anticommuting fields.
Invariance of the Lagrangian requires A, ==*A,;. We see
from the simplest term in the Lagrangian that the matrix M

(no sum),
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must be symmetric for Bose—Einstein (+) statistics and an-
tisymmetric for Fermi-Dirac (—) statistics; the opposite
holds for the K matrices.

The symmetry type of M and the rotational invariance of
the Lagrangian are compatible only with the usual spin-
statistics relation: a symmetric scalar product corresponding
to an integral spin field for Bose—Einstein statistics with M
symmetric; an antisymmetric scalar product corresponding to
a half-integral spin field for Fermi—Dirac statistics with M
antisymmetric. This is the essential point of Sudarshan’s
proorlﬁl.ds

This conclusion is maintained when there is more than one
flavor, as Schwinger argued in the following way. Consider
the simple case of a complex field ¢ whose charge conser-
vation is guaranteed by invariance of the Lagrangian under a
global U(1) gauge transformation which changes the phase
of ¢ by a constant amount

Y=y’ =e'y,
corresponding to invariance under rotation by angle ¢ in the

two-dimensional flavor space of £'"’=Re ¢ and §?=Im ¢,
and leaving

(ED)2+ (ED)2= (£ M)2+ (£ D)2,

The bilinear kinematic Lagrangian
F=go=14 gn=2

has the required gauge invariant flavor singlet behavior
s R

if the K and M matrices are the same in £ 1) and % 2.
Schwinger concludes that the spin-statistics connection can
be extended in a gauge invariant way from the basic Hermit-
ian fields to the charged fields.

The result does not explicitly require Lorentz invariance,
although it is consistent with Lorentz invariant theories at the
expense of doubling (at least) the number of Hermitian field
components £, and the dimension of the K and M matrices
for a given spin. Three space dimensions are necessary in
order to have symmetric or antisymmetric scalar products. A
nonrelativistic quantum field theory such as quantum hydro-
dynamics should be quantized according to Bose—Einstein
statistics. By appending a Pauli spin-j spinor, we can change
the required statistics to Fermi—Dirac, but care must be taken
to distinguish spin degrees of freedom from internal degrees
of freedom generated by some symmetry group such as isos-
pin. The generators of the spin symmetry must be included in
the rotational invariance of the Lagrangian, so the spin indi-
ces must be included in the fields £,, in which case their
impact on the statistics of the field will be recognized by
Sudarshan’s theorem. Flavor degrees of freedom such as
isospin appear as an overall, unsummed, diagonal flavor in-
dex a and have no impact on the spin-statistics connection.
In the next section we consider examples that illustrate this
requirement of the Schwinger construction and the Sudars-
han proof.

§C3. Further comments on the elementary proof

Sudarshan and Schwinger base their proofs on Dirac-like
Lagrangians. Both ignore interactions, and both make use of
Hermitian fields. Both recognize that the mass matrix M
must be symmetric for Bose—Einstein statistics, antisymmet-
ric for Fermi—Dirac. The great simplification in Sudarshan’s
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proof is to recognize that the spin-statistics connection can
be made directly from rotational invariance without appeal-
ing explicitly—as Schwinger does—to Lorentz invariance
and time reversal.

To summarize the preceding section: The Hermitian flavor
degrees of freedom « are diagonal in their individual kine-
matic Lagrangians 4. The rotationally invariant &"M ¢
term in each such Lagrangian has the metric [Clebsch—
Gordan coefficient (sms—m|ss00)] in the spin space, sym-
metric for integral spin s, antisymmetric for half-integral
spin, and determines the spin-statistics connection for the
individual Hermitian fields £“. The Hermitian fields may
combine in flavor pairs (£'!),£?), which are the real and
imaginary parts of complex fields # ' which satisfy a
global (charge-conserving) gauge invariance under the phase
transformation ¢— e**y. Then the pair of Hermitian fields is
rigidly rotated by the Hamiltonian Jeaving the norm (£1)?
+(£%)? invariant. The sum of the kinematic Lagrangians
Fo=1+ #*=2 is left invariant under the gauge transforma-
tion. In this way, Sudarshan’s proof is extended to include
the non-Hermitian field .

Two simple examples are instructive. The isospin-1 pion
field charge triplet ¥+~ can be written in terms of the three
Hermitian components of an isospin vector field 7,3 as

at=(m+im)IVZ,

with 7~ T=7* and 7% =% A charge gauge transforma-
tion changes

a=(m—im)V2, =°=ms,

’.lT:=}’JT' &+ =e:ia1,r1’
and leaves 7° unchanged. The effect on the Hermitian fields
is to simply rotate the isospin vector fields 7r; and 7, by an
angle « around the 3 axis. A gauge invariant quadratic Her-
mitian Larangian has the generic form

F~Hattwt+o Y+ 7%49),

which can be written in terms of the Hermitian components
as

B~ Y mr+ mr+ ).

The gauge invariance of this form is assured by the invari-
ance of the length of the (1,2) projection of the vector field
under a rotation around the 3 axis. We can now choose the
parameters of the a5 part of the Lagrangian to be the same as
those of the 7y, 1r, part and get full isospin invariance under
rotations around any axis.

A different strategy suggests itself if we ignore the 7° for
a moment. Then another gauge invariant possibility would
appear to be

F~Yattmt—a T ) ~i(mymy— ),

which is the antisymmetric 3 component of a cross product,
also invariant under rotations around the 3 axis. We do not
take this possibility seriously here because we have the 74
field and its flavor symmetric Lagrangian to guide us. Fur-
thermore, we are familiar with the fact that the time-
derivative terms in the Klein—-Gordon Lagrangian must occur
with positive signs to guarantee positive kinetic energy terms
in the Hamiltonian, so we are doubly wary of such construc-
tions, A still further objection to such a Lagrangian would be
that it is odd under the usual charge conjugation transforma-
tion wHew.
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But there is another physical situation where we do not
have Hermitian components to guide us—the K-meson isos-
pin doublet K, K® and its antiparticle doublet K°, K.
Here we consider the impact on the Klein—Gordon field
theory of K and K~ mesons of admitting a Lagrangian
which is antisymmetric in flavor. The K* and K~ fields ¢*
and ¢~ =¢ "1 satisfy the Klein-Gordon Lagrangian

Lsin=0,0""0,6"—m?p* T £ (¢ T 0Y), (54)
which can be written as
e M

symmetric (S,+) or antisymmetric (A,—) in the fields ¢
and ¢~ . Expressed in terms of Hermitian fields ¢, and ¢,
the Lagrangian

Za~i(P1dr— Pr¢)).
F is the usual theory; % exhibits pathologies which rule it
out.
The Euler-Lagrange equation is
(1) (a5 +m?) " =0, (55)

where %"=+ 1 for commuting fields required to give a non-
trivial result for %5; and —1 for anticommuting fields re-
quired for . The Fourier analysis follows in the usual
way as

1
V2o

(b+:¢++¢_:zft" {akei(krm (u:)_i_b;e—i(kr—wi‘]}’
where w=+ \fk2+m2, and the a,b,a’,b’ satisfy commuta-
tion (S) or anticommutation relations (A). The energy and
charge follow as

Esm=§ w(azakibzbk), Qsng q(fz;akibgbk).

For the usual symmetric case with commuting operators,
these are expressed in terms of number operators as

Eg=2 o(N{+ND), Qs=23 q(N{=Np).

For the proposed antisymmetric case with anticommutators
and number operators N =a'a and N~ =5bTh,

Ex=2L o(N{=Ny), Q4=2 q(N{+Np).

But this is untenable because b' creates negative charge (as
defined by the gauge transformation) and we require a minus
N, in Q. The error occurred in jumping to the conclusion
that [by,b}]. =+ Sy.¢r» as is usually the case. In fact, to
satisfy canonical anticommutation relations

[H¢,Q_‘)]_=5H,

for a Klein-Gordon field, we need to reverse the sign of the
antiparticle anticommutator to

[bk,bzr]+—’_5k,w ’

which seems impossible. One way to repair the damage is to
invoke an indefinite metric in the Hilbert space*’ so (¥}
=—1 for b quanta, and identify N, = —bjb,=0,1. At this
price, we return to
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EA:%: W(N;: +N), Q,d.:é: q(N:—N;).

The usual way to rule out anticommutation relations for
Klein—~Gordon scalar fields is to invoke relativistic invari-
ance and causality and to require that the effect of two fields
at spacelike separations cannot depend on their order of op-
eration, so

(0lL(x), 8" (y)]<]0)=0

at equal times for all x—y#0. In terms of the operators
(a,b) the left-hand side is

[ 2k (oltaa1elope e
2w Rl

"i'<0|[b*‘b]i!0>e+ik{x—y})' 54

For standard commutators this reduces to

k.
J e sin{k(x—y)},
which is odd in k and integrates to zero. For standard anti-
commutators we get the cosine instead of the sine, and a
nonzero result in violation of causality. For the pathological
anticommutators introduced above, this objection is removed
and we pass this test of causality at the price of the indefinite
metric.

Another way to rule out anticommutation relations is to
recognize that for Klein—Gordon fields, the generalized mo-
mentum IT is a field derivative and not a field itself. The
canonical anticommutation relations do not specify the anti-
commutators of the fields themselves, which must be defined
by ““all others are zero.”” But this cannot be so because for

any state | i),

<¢I[¢.¢*(x)]+lw>=§ [xl ol >+ [(xl o1 w))2>0,

unless ¢ annihilates all states. This proof also is circum-
vented by the indefinite metric which would change the rela-
tive sign of the two squared matrix elements above. Simi-
larly, charge conjugation must include a metric reversal to
restore invariance.

Such pathologies brought on by antisymmetrizing on fla-
vor and thereby reversing the spin-statistics connection have
their analogs in Dirac theory. These pathologies are excluded
by a basic postulate requiring the Hilbert space to consist of
positive energy states with positive definite metric. One con-
sequence is that only the flavor symmetric Lagrangians are
admitted into relativistic field theories.*® It is evident that the
pathology is a result of the negative frequency (antiparticle
creation) component of the field ¢_ being inextricably
linked to the positive frequency (particle annihilation) com-
ponent ¢, in the relativistic field ¢. This linkage is neces-
sary in order to respect proper Lorentz transformations which
reverse the sign of the frequency and wave number, Pauli’s
original ‘‘strong reflections.”” Nothing has been said about
the fields ¢, and ¢ taken separately, ag they are-in non-
relativistic theories.

By expressing the relativistic Lagrangians in Schwinger’s
form, we get Sudarshan’s proof based on the rotation sub-
group of the full Lorentz group. By elevating the flavor sin-
glet requirement implicit in relativistic theory to a separate
postulate, Sudarshan’s proof becomes an almost  free.
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standing nonrelativistic proof of the Spin-Statistics Theorem.
There is no doubt, however, that the flavor symmetric pos-
tulate has deep relativistic roots; nor is there any doubt that
there are interesting features—perhaps not always
pathological—which occur in prospective counterexamples.

One such counterexample would take a Lagrangian for
which the spin statistics has been established and antisym-
metrize on particle flavor, for example,

2
F=ylio =M= 2 0, k)i~ M),

apparently reversing the original conclusion. However, the
Lagrangian can be diagonalized in the flavor indices (j,k)
leading to two fields with identical independent Lagrangians
of opposite sign, identical but opposite spectra, and a total
field energy which is unbounded below.

Next we examine the origin of the sign in the spin metric
related to the rotational invariance of the scalar product
a'a+ BB, which is imposed by defining

al=au=—Br, BI=Burs=+a, (56)

in terms of the time-reverse spmors Consnstencg for all an-
gular momentum requires the spin-metric to be®

(jmj—m|jj00)=(—)*""/\2j+1. (57)

Two such time reversals result in a phase (—)? consistent
with Feynman’s discussion (see the Appendix), and with
Schwinger’s proofs explicitly using time-reversal invariance.
The second-quantized Hermitian field & expressed in terms
of angular momentum eigenstates U and their time-reverse
Uy, is qualitatively given by

£~ aU+btU'=Y, aU+a'U,,. (58)

The one-particle expectation value of the mass term in the
Lagrangian is

(1|lL~EME1)~ 2, U, U. (59)

Summed over spin components it is a rotational invariant as
required.

The nonrelativistic Schrodinger equation for the complex
wave function ¢ can be included in the proof by taking the
nonrelativistic limit of the Klein—Gordon Lagrangian in the
case of integral spin, and the Dirac Lagrangian for half-
integral spin. Without using the limit of the relativistic
theory, the nonrelativistic Schrodinger theory can evidently
be quantized with either Bose—Einstein or Fermi-Dirac sta-
tistics. The difficulty appears because the Schrodinger La-
grangian is not directly of the Schwinger form, but contains
terms analogous to ¢ ¢, . Without additional arguments, we
cannot rule out the possibility of antisymmetrizing such
terms, leaving open the possibility of either choice of statis-
tics. This leads to an implicit but critical reliance on relativ-
istic wave equations.

The electromagnetic field is an almost trivial case using
Sudarshan’s proof. Since the electromagnetic field is Hermit-
ian, it can be understood without recourse to the Schwinger
Dirac-like Lagrangian. The behavior of the electric field term

E’= E dA,0A L,
rs=123
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in the Lagrangian (or the Hamiltonian) is sufficient to require
Bose-Einstein quantization using Sudarshan’s argument.
Rotational invariance requires g,,= g, 10 be symmetric; in-
variance of the Lagrangian (within a ¢ number) under the
exchange A, <A requires commutation and therefore Bose—
Einstein statistics.

None of the above considerations limit the statistics of
composite and nonlocal entities. But usually a composite
particle can be considered as a collection of point particles
with exchange symmetry simply the product of those of the
constituents. When topological obstructions to simple ex-
change occur, the situation can be more complicated,®® as
occurs in the charged particle-magnetic monopole system of
Saha, in the case of charged particles with a minimal Chern-
Simons interaction in (2+ |)-dimensional space-time, and
in the Skyrme model of the nucleon as a topological knot in
a spin-0 pion field, but having many of the properties of the
nucleon. None are simple additive-multiplicative constituent
models.

The explicit construction for relativistic anticommuting
fields of higher half-integral spin turns out to be impossible.
The relativistic Hermitian spinors have extra dimensions
(from 12 to 24 depending on the system used, in the case of
spin- ;) which must be reduced to 2(25+1) (=8) indepen-
dent degrees Df freedom by subsidiary conditions. Johnson
and Sudarshan®’ show that this program is blocked by the
appearance of anticommutation relations of indefinite sign
where positive definite ones are required. In the anticommu-
tation relations

[{J?fk]'l-

the matrix K is usually either indefinite or singular, indicat-
ing that the fields £; are not independent. Projection opera-
tors must be found, a sequence of constraints imposed, and
nonsingular K matrices of reduced dimension constructed.
But this program is halted by the fact that the reduced K
matrix is dependent on the field couplings except in the case
of spin-3, where no constraints are necessary and K=1. As a
result, for a charged spin-3 field the anticommutator depends
on the external field in such a way that the quantization
becomes inconsistent.

Johnson and Sudarshan conclude that only spin-0, spin-1,
and spin- fields can be regarded as fundamental. ngher
spin fields must be co Posuc and cannot be represented by a
local action principle.’” Their result supports the view that
the spin-statistics connection need be demonstrated only for
spin-0 and spin-}.

;kgKD gk

PART D. UNDERSTANDING THE SPIN-STATISTICS
CONNECTION

§D1. Dirac equation from Grassmann theory

Finally, and most simply, we deduce the s in-statistics
connection starting from Grassmann variables® defined by
the fundamental anticommutation relation

Eibkt &&= 0j;. (60)

By a series of inferences, we show that the only possible
Lagrangian for the associated field is a first-order Dirac La-
grangian. From this point the Dirac equation with 4-
component spinors, spin-3, and all the rest follows as usual.
The difference is that we have started with an anticommut-
ing quantum field which at the outset was required to satisfy
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the Pauli Exclusion Principle, and—by inference from the
only possible Lagrangian for anticommuting objects—must
satisfy the Dirac equation.

Schwinger’s Lagrangian, linear in the first derivative of
the field, suggests that we start with a Grassman variable
defined at a point, a function of time only, and construct the
basic dynamics. By embedding the result into a Lorentz in-
variant form, we limit the possibilities to a Grassmann field
of spin-j satisfying the Dirac equation. This program starts
with the prescription

#=5 3 tub= H8), (61)

where the interaction Hamiltonian #,; will be specified in a
moment. Subject to certain restrictions which we discuss in
the following sections, this form turns out to be unique. The
kinetic term (i/2)£7¢ is Hermitian provided the £'s anticom-
mute and are themselves Hermitian. The simplest choice is a
two-component object with k=1,2. The generalized momen-
tum

£ i ¢ 62)
= —_—= — i

a2
(by convention, all derivatives on anticommuting objects are
from the right) leads to the anticommutation relations

1Ty

[6.1)s =5 =61 = 8. (63

This is positive definite as required. The prescription *‘all
others are zero'’ will be invoked where needed. The anti-
commutation relation is canonical except for the factor },
which is necessary for the Hamilton equations of motion to
agree with the Euler—Lagrange equations.

The Hamiltonian

H=11, &~ L=F(£), (64)

where the term linear in the velocity ¢ disappears as usual. In
the kinematic Lagrangian, we choose

F=1E"ME, (65)

with M'=M=—-MT in order that S'=F#=#". The

Euler—Lagrange equation leads to &= —iM;,&, . The same

result follows from the Hamilton equation of motion &

=i[ &, ,.%,]- using the anticommutation relations above.
The specific 2X2 example we discuss will have

(0 =i
M= ’
. +i 0

If the single oscillator is extended to a field in three space
dimensions, we can already identify the two component
Grassmann variable as spin-3. This follows directly from the
required rotational invariance of the interaction Hamiltonian
), as discussed in §C2, and the antisymmetry of M. If we
were to assume a three-component Grassmann variable, we
could not embed it in a rotationally invariant theory. The M
matrix would be antisymmetric, but could not be the spin
metric for a half-integral spin particle which must have even
dimension. According to the proof of Johnson and Sudars-
han, four and more component Grassmann objects must lead
to frustrated theories also.

299 Am. J. Phys., Vol. 66, No. 4, April 1998

Next we observe that the Lagrangian .2’ contains only a
first derivative and already invites a Dirac embedding. There
is a minor technicality. So far the fields have been Hermitian
which puts the Dirac equation into the Majorana’
rf_:pres.emati(mf“1 where, for example, yo= yf]= - 'yf; similar
to M but 4 X 4. We can infer

1 s
Zpb=7 J d*x " (x,0) Yol oE— v P —m)ip(x,1).  (66)
Heré. = y}Z y_? for j=x,y,z in the Majorana represen-
tation. Having made the embedding, we can go to a general
representation with complex Dirac spinors by a unitary trans-
formation and return if we wish to the familiar standard rep-
resentation. We have generalized the summation on k to in-
clude an integration over the spatial positions so that the
anticommutation relations are generalized to ~&;,8°(x
—x") when we invoke the “‘all others are zero’” prescription.
Also the two two-dimensional Grassmann variables &, de-
fined independently at each point and satisfying a pointlike
Schrodinger equation have been embedded in an irreducible
(that is, not separable) way into a covariant structure of four
dimensions. This is done in the Schwinger notation of §C2
by combining the two-component Grassmann variables £, &’
to a four-component ¥,

atl

and the K® and M matrices to (subscripts 2,4 are the dimen-
sion)

K=

K$ 0)=(12 0)51;3%,

0 K9 0 1,
the coefficient of E in Eq. (66); but, for irreducibility,

0 M 2) 0 O'}.
M S = =
M, o) \e, o) 7"
the coefficient of m in Eq. (66). The last step in the embed-
ding is to include the space derivatives in the Dirac way to
obtain a covariant structure.
The second-quantized Dirac field follows immediately

with all its consequences, including the Dirac wave function
and the identification of the spin-j.

§D2. No Bose—Einstein Dirac equation

The question is whether there can be a commuting field
which has a Dirac Lagrangian. Clearly, in a sense, there can.
We have mentioned that the Klein—Gordon equation for a
relativistic scalar Hermitian field requires 5X5 K and M
matrices, a scalar field ¢, and an auxiliary four vector field
V, . What is eliminated by Dirac’s classic development is
the possibility of elementary representations satisfying a
Hamiltonian equation with only a first time derivative, with-
out auxiliary fields. In this case, the Lagrangian.(for a par-
ticle at rest)

SN
F=5 (EKE— 5 £'M§ (67)

- —_ T : .
mustT hachK—K*— —-K imaginary antisymmetric and M
=M ZM. Feal symmetric in order to give nonvanishing
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terms in the Euler-Lagrange equations of motion. The gen-
eralized momentum

0% i
M=—=~ &K, 8
k %, 2 &Ky (68)

and the canonical commutation relations become

(6, L) =1 8,506, .£]-= K" ()

Now we look for various finite dimensional representa-
tions. We easily see that there can be no one-dimensional
representation because K is antisymmetric with no diagonal
element. For a two-dimensional representation, K=o,.
When we try to embed the theory in three-dimensional space
and require it to be relativistically invariant we must elimi-
nate the two-dimensional representation on the now familiar
grounds of Dirac’s algebra. A candidate K matrix for a three-
dimensional representation is L,, which satisfies L},=L;
= —L; but has no inverse, and fails to give sensible commu-
tation relations for the fields, as well as failing the Dirac
algebra.

It seems impossible for a Bose—Einstein field to have a
Dirac Lagrangian but we continue to explore the situation.
For this we turn to the spectrum of the Hamiltonian for rep-
resentations which can be embedded relativistically. The
Hamiltonian is simply

F=MNTé-F=3"M¢

with M real symmetric. The trivial choice M =1, the unit
matrix, corresponds to a product of all covariant or all con-
travariant representations of the group O(4) which cannot be
embedded into representations of the Lorentz group. In order
to get products of covariant and contravariant representa-
tions, of dimension at least 4 X4, we must choose a non-
trivial M=M"=M" such as

0 o,
M= !
o, 0
But this M has equal numbers of +1 and —1 eigenvalues
and corresponds to a Hamiltonian with negative energies.
These are just the signs that are reversed by the anticommut-
ing Grassmann variables in the allowed Grassmann—Dirac

theory, and serve to eliminate the possibility of the relativis-
tic embedding of a Bose-Einstein Dirac-like equation.

§D3. No Fermi~Dirac Klein-Gordon Lagrangian

A different Lagrangian which we might consider for the
Grassmann variables is the Klein—-Gordon form

F=3ETKE- HETME. (70)
Now K'=K=—KT and MY'=M=—MT are required for
F'=_%= %", The generalized momentum

IT —a'%)——K £=£K (71)
5 aé sror rers

5

defines the canonical anticommutator

[gs&nr]+:£55r=>[§s’ér]+=”{s_;]' (72)

The usual prescription ‘“‘all others are zero’” includes
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[és “gs]-l =0

and would require ¢,=0. The conclusion is that Grassmann
fields cannot have a Klein—Gordon Lagrangian. The conclu-
sion is somewhat trivial for one-dimensional Grassmann
variables which do not exist anyway. The prescription “‘all
others are zero’" which requires £,=0 may not seem particu-
larly well founded, but without it the Hamilton equations of
motion are not defined and we lose the Hamiltonian as the
generator of time translations, and with it the powerful struc-
tures of classical mechanics. If a dynamical structure parallel
to the canonical field theory of Bose—Einstein fields is to
exist for Fermi—Dirac fields, ‘‘canonical’’ anticommutation
relations seem to be essential. If we accept that, then the
Grassmann Lagrangian of §D1 is unique as is the embedding
in the Dirac Lagrangian.

Pressing on with the Euler—d.agrange equations, a non-
trivial 4 X4 choice for M and K is

o 0 io’,) ( 0 o,
=i, 0/ B —ioc, 0/

giving
K“M=(w’ _0 )
0 oy
Solutions of the form &(¢)~e='“! exist only if the eigenval-
ues w? of K~'M are real and positive. This is clearly not the
case in our example where they are *i. Other choices for M
and K either lead to the same result or are the trivial choice
K~'M =1 corresponding to the direct product of two decou-
pled 2X2 representations which cannot be relativistically
embedded.

We conclude that no relativistic Grassmann field can be a
Klein—Gordon field. Of course the Grassmann field does sat-
isfy the Klein—Gordon equation as a result of the Dirac equa-
tion, but that is distinct from having a Klein—-Gordon La-
grangian rather than a Dirac Lagrangian.

PART E: CONCLUDING REMARKS

Sudarshan’s arguments based on rotational invariance lead
to a simple, transparent, and elementary proof of the Spin-
Statistics Theorem, greatly simplifying a proof due to
Schwinger based on time-reversal invariance. Sudarshan’s
proof eliminates the explicit dependence of the proof on rela-
tivistic quantum field theory. A critical implicit dependence
on relativity is still present, however, as described in §C3.

A fundamental understanding of the spin-statistics connec-
tion is obtained in the derivation of the Dirac equation as the
only possible relativistic embedding of the Lagrangian
theory of the simplest point Grassmann oscillator. The basic
field is defined at the outset as an anticommuting quantum
field and, by deWet's arguments, is found to satisfy the Dirac
equation for spin-3. The arguments of Johnson and Sudars-
han rule out the possibility of fundamental fields having half-
integral spin greater than 3, so the fundamental connectior
between Grassmann variables and Dirac spinors is estab-
lished. Schwinger’s arguments for composite fields are suf-
ficient in other cases. The Klein—Gordon Lagrangian with
canonical anticommutation relations is ruled out for anticom-
muting Grassmann fields by analogs of deWet's theorem
Intrinsically positive anticommutators turn out to be nega-
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tive. Commuting Bose—Einstein fields cannot have a Dirac
Lagrangian, which would lead to negative energies.

Understanding the puzzle of the spin-statistics connection
requires that we admit the existence of the most elementary
(two-component) Grassmann oscillators, which anticommute
and must relativistically embed in the spin-3 Dirac equation.
Commuting fields cannot satisfy the Dirac Lagrangian and
relativity and have a positive definite Hamiltonian, an old
result. Conversely, a Klein—-Gordon Lagrangian for an anti-
commuting field leads to null fields, another old result. Com-
muting fields satisfy the Klein-Gordon Lagrangian without
contradiction, again an old and familiar result.

Clearly, a unifying point of view for understanding the
spin-statistics connection presents itself. Start with two fun-
damental oscillator fields: a commuting one, which must
have a Klein—-Gordon Lagrangian and spin-0; and an anti-
commuting one, which must have a Dirac Lagrangian and
spin-3.

In summary, we have simplified the problem in two steps.
The first step is Sudarshan’s demonstration that the rotational
invariance of the Lagrangian requires the Spin-Statistics
Theorem in a simple way, which however does still depend
on relativistic quantum field theory for a key argument. In
the second step we make the spin-statistics connection un-
derstandable by reversing the question to that of the
statistics-spin connection. We show that ordinary classical
commuting Bose—Einstein number-valued oscillators embed
naturally into relativistic quantum field theoretic Klein—
Gordon fields of spin-0; not-so-ordinary anticommuting
Fermi—Dirac Grassmann-valued oscillators embed naturally
into relativistic quantum field theoretic Dirac fields with
spin-3. What remains to be understood in more fundamental
terms is the existence of the two types of oscillator: number
valued and Grassmann valued.

Finally we are forced to conclude that although the Spin-
Statistics Theorem is simply stated, it is by no means simply
understood or simply proved.
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APPENDIX: TECHNICAL DETAILS OF FEYNMAN’S
UNITARITY ARGUMENT

First Feynman establishes that spin-% states change sign
under two time reversals. The effect of time-reversal T on
spin-} states must be

Tim,=+)=e"lm,==), Tlm,=-)=e'm,=+).
(A1)
With TF=F*T defining the effect of weak time reversal on

algebraic functions F to be complex conjugation, two time
reversals give

T m,=+)=e"$"¥m,=+). (A2)

301 Am. ]. Phys., Vol. 66, No. 4, April 1998

Feynman shows that we cannot choose ¢=§. For consider
the time reversal of states quantized along the x axis. With

jm,=x)=|m,=+)x|m,=-), (A3)

then
Time=+)=e¥lm = =) =e¥(|m,= +)~|m,= ~))
=e‘¢imz= —}+ eigimzz +),
so we must have
e¥=¢'® but —e¥=¢'¢
and
eilé=®) = _ 1.

The result is that two time reversals, change the sign of a
spin-3 state, and, by superposition, any half-integral spin
state. The sign reversal does not occur for integral spin states
because they include the unique M =0 state for which

T’ |M=0)=Te*|M=0)=¢""*T|M=0)
=e—iue+iﬂ'iM=0)'

so T2=1, a result that can be extended to all integral spin
states because they are superposable with the M =0 state.

Next, Feynman considers the unitarity of the scattering
matrix S, the operator which evolves the quantum system
from early (noninteracting) times, through the scattering in-
terval, to late (again noninteracting) times

W (t—) =S¥ (t— —). (Ad)

In order to maintain orthonormality and completeness of
states propagated through the scattering, the § matrix must
be unitary,

Sts=551T=1,
In terms of the transition matrix .77,
§S=1-2i7. (AS)

These matrix operators are familiar in their elementary form
for individual partial waves elastically scattered by a central
potential. In this case, S=e%%, 7= —¢'? sin &, and the cross
section is |#]*=sin? § within factors of no concern here.
The unitarity of the § matrix imposes a requirement on the .7~
matrix,

StS=(1+2iN(1-2i)=1-2i(T-T)+45 7.

For diagonal matrix elements .775;,

Im 7= — (71 9),=- 2 |7;*<0. (A6)
i
For a given state i, the sum is over all energy and momen-
tum conserving states j. The right-hand side has a ready
interpretation in terms of the total cross section for scattering
from state i to all possible states j, and it unequivocally
determines the sign of the imaginary part of the diagonal
Z-matrix elements, which correspond to forward elastic
scattering. These results are familiar for the scattering ampli-
tudes of individual partial waves elastically scattered by a
central potential. There, —Im % =sin? §=|7|*=o/dmk?
with o the partial cross section, and k the momentum.
The Feynman propagator
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3
Sp(xy=x,)= w;‘j (;"—wp};%{@(rz—n)mm

Xe iPr2=x) 4 @ (1, — 1) A _(p)e* Pr2—x1)]

(A7)
is the amplitude for a free Dirac particle to propagate for-
ward in time from 1—2 when the unit step function @(z,
—1;)=1 or for a free Dirac antiparticle to propagate forward
in time from 2—1 when the other step function ©(t,—1,)
=1. It is the great—but not entirely free—elegance of the
Feynman Rules to treat the antiparticle propagation as if it
were negative energy particles propagating backward in
time. :

The projection operator A ,(p) onto positive energy Dirac
states, in terms of free Dirac spinors u(p) satisfying (py
—m)u(p)=0 with p2=m2, po>0 and normalized to iw
=1,is

— pytm
Axlp)= E* u(pss)u(p;s)=——

§=x

(A8)

We begin to understand Feynman’s argument. It becomes
clear that the Feynman Dirac propagator on the mass shell,
where the virtual particles become real and contribute to the
unitarity sum in the imaginary part of the amplitudes, is the
product of a real, positive projection operator times a Feyn-
man scalar propagator. The Dirac propagator must contribute
with the same sign to the imaginary part as does the scalar
propagator. Our only concern—still assuming the spin-0
loop is well behaved—is the overall external sign of the
amplitude.

The “‘negative energy’’ projection operator enters when
we consider an antiparticle propagating forward in time as a
negative energy particle propagating backward in time, as
Feynman does in his prescription for the loop amplitude. We
need to examine the particle propagator A, , with momen-
tum p continued to the reversed four-momentum —p. We
find that it is not directly the (more properly called) antipar-
ticle projection operator A_(p). An extra minus sign is
needed in the continuation

—-py+
pyrtm %

A-(P)=A+(—P)=T

> u(—p;s)a(—p;s)

but =—, u(—p;s)i(—pss)

5

or =-—§ v(p:s)v(p;s). (A9)

An extra minus sign must be inserted in the continuation

u(p)u(p)— —u(—p)u(—p)=-v(p)v(p). (A10)

The Feynman Green’s function becomes

SH(x'=x)=—iO(t'=1)>, y¢

——i®' =)D, YP+i®(—1")>, Y. (All)

k= =
Recall that the negative energy spinors have Y_v_=0v
=—1 and require a minus sign in the projection operator

A_(p).
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A nearly identical situation arises in the Feynman Green’s
function for the spin-0 Klein—Gordon equation. Here a sign
change sneaks in because the norm of positive energy states
is

~[ dluins..

but the negative of this expression for negative energy states.
Bjorken and Drell have a full description of the two cases in
lheirﬂ“Relativistic Quantum Mechanics,”” pages 95 and
188.

This lack of simple continuability is also obvious from the
gap between the static +m and —m four-component Dirac
spinors. We have (in an abbreviated 2 X2 notation)

1 0
u(m)=(0). u(—m)Eu(m2=(I). (A12)
and the projection operators
1 0
A+(m)=(0 0)=2 u(m)ia(m)
_(1] (1 0)
—0(1 0)0 _1)° (A13)
but
0 0 ;
A_(m)=(0 1)=—E u(—m)ir(—m)
== v(m)i(m)
B (0] (1 0)
o ¥ (0 1) 0 -1/ (A14)
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